NOMENCLATURA QUÍMICA INORGÁNICA

Resumen recomendaciones IUPAC 2005

Principales novedades

- Todos los compuestos de los halógenos con el oxígenos se nombran como haluros de oxígeno y no como óxidos de halógeno
- Se modifica la nomenclatura sistemática de oxoácidos y oxisales
- Se modifica la nomenclatura de iones
- Se sustituyen la terminación -ina por –ano en los compuestos de no metales con hidrógeno

Sistema de nomenclatura

- Se establecen tres sistemas de nomenclatura:
 - La nomenclatura de composición
 - La nomenclatura de sustitución
 - La nomenclatura de adición

Nomenclatura de composición

- Se usa para denotar las construcciones de nombres que están basadas solamente en la composición de las sustancias o especies que se van a nombrar, en contraposición a los sistemas que implican información estructural
- Es por ejemplo la construcción de un nombre estequiométrico generalizado
- Los nombres de los componentes (que pueden ser elementos o entidades compuestas como los iones poliatómicos) se indican con prefijos multiplicadores que dan la estequiometría completa del compuesto
- Si existieran dos o más componentes, estos se dividen formalmente en dos clases: electropositivos y electronegativos
- Se requieren reglas gramaticales para especificar el orden de los componentes, el uso de los prefijos multiplicadores y las terminaciones adecuadas para los componentes electronegativos

Nomenclatura de composición

- El caso más sencillo es cuando una especie está formada por un único elemento
- Al construir el nombre de un compuesto binario, se considera la diferente electronegatividad
- El elemento más electronegativo se escribe a la derecha y se nombra acabado en –uro
- El nombre del elemento menos electronegativo permanece inalterado
- Sólo en el caso de que el elemento más electronegativo sea el oxígeno se nombran como óxidos
- Las vocales finales de los prefijos numéricos no deben suprimirse, salvo la excepción de "monóxido"

H₂ Dihidrógeno

Prefijo numeral. Indica el número de átomos

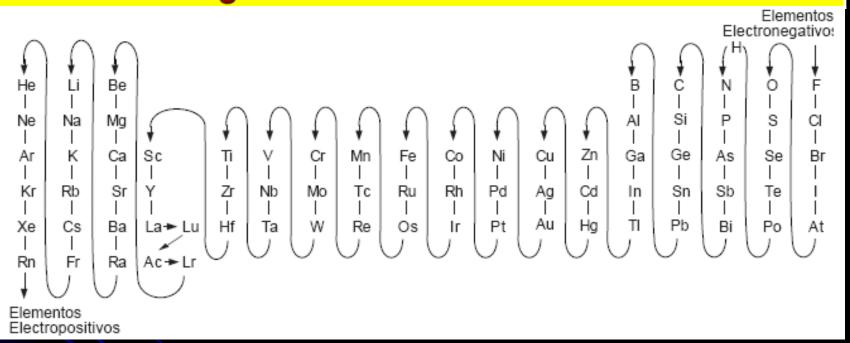
Nombre del elemento

 O_3

Trioxígeno

Elemento menos electronegativo

Nombre del elemento menos electronegativo

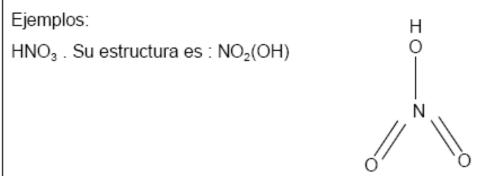

Trióxido de dinitrógeno

Elemento más electronegativo

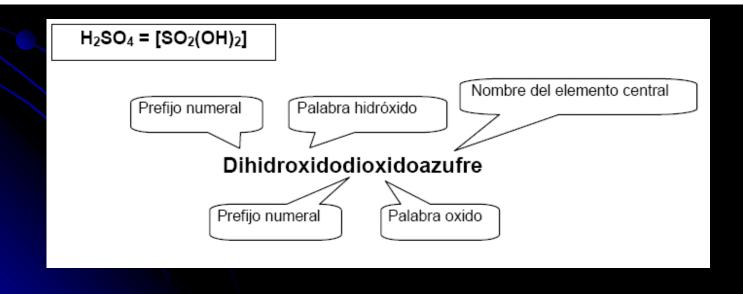
Nombre del elemento más electronegativo

SF₆ Hexafluoruro de azufre

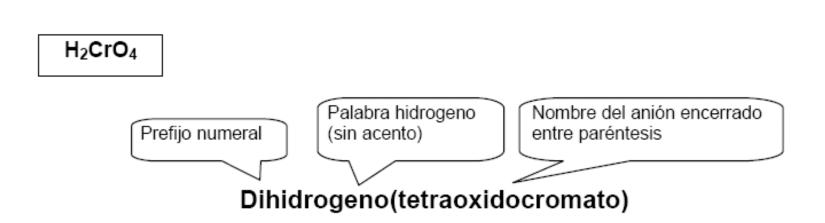
Electronegatividad a efectos de formulación

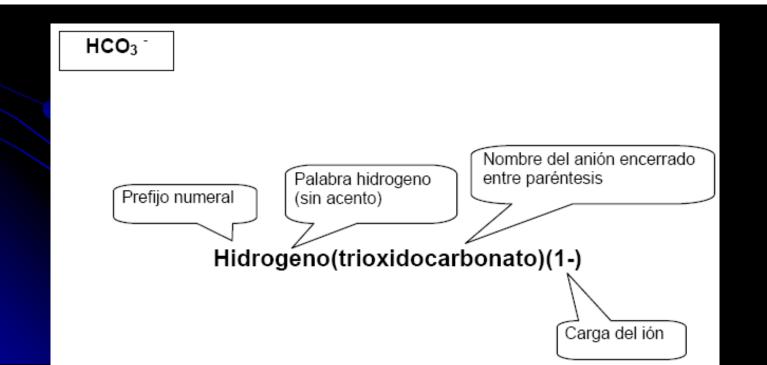

O₃Cl₂ dicloruro de trioxígeno

Nomenclatura de adición


- Considera que un compuesto o especie es una combinación de un átomo central o átomos centrales con ligandos asociados
- Las reglas establecen los nombres de los ligandos y de los átomos centrales, la indicación de la carga o de los electrones desapareados de las especies, la designación del o de los puntos de unión de los ligandos complicados, la designación de relaciones espaciales, etc

En la nomenclatura de adición los nombres se construyen colocando los nombres de los ligandos como prefijos del nombre (o nombres) del (de los) átomo(s) central(es)


Los ácidos inorgánicos pueden nombrarse con esta nomenclatura, teniendo en cuenta que los hidrógenos se unen cada uno a un oxígeno y éste se une al átomo central, y que los oxígenos restantes se enlazan mediante doble enlace. No se utiliza la palabra ácido.



se nombraría como: hidroxidodioxidonitrógeno

Para los compuestos e iones que contienen hidrógeno en su molécula se suministra una nomenclatura alternativa denominada "nomenclatura de hidrógeno"

Nomenclatura de sustitución

- Se utiliza ampliamente en compuestos orgánicos y se basa en la idea de un hidruro progenitor que se modifica al sustituir los átomos de hidrógeno por otros átomos y/o grupos atómicos
- Las reglas son necesarias para nombrar los compuestos progenitores y los sustituyentes, para establecer el orden de citación de los nombres de los sustituyentes y para especificar la unión de estos últimos

NOMENCLATURA DE SUSTITUCIÓN

La nomenclatura de sustitución basa los nombres en los llamados *hidruros progenitores*. Los nombres se forman citando los prefijos o sufijos pertinentes de los grupos sustituyentes que reemplazan los átomos de hidrógeno del hidruro progenitor, unidos, sin separación, al nombre del hidruro padre sin sustituir

	Nombres de los hidruros progenitores								
BH ₃	Borano	CH₄	Metano	NH ₃	Azano	H ₂ O	Oxidano	HF	Fluorano
AlH ₃	Alumano	SiH₄	Silano	PH ₃	Fosfano	SH ₂	Sulfano	HCI	Clorano
GaH₃	Galano	GeH₄	Germano	AsH₃	Arsano	SeH ₂	Secano	HBr	Bromano
InH ₃	Indigano	SnH₄	Estannano	SbH₃	Estibano	TeH₂	Telano	IH	Yodano
TIH ₃	talano	PbH₄	Plumbano	BiH₃	Bismutano	PoH ₂	Polano	HAt	Astatano

Ejemplos:

PH₂Cl clorofosfano

PbEt₄ petraetilplumbano

PCl₅ pentaclorofosfano

H- hidruro
F- fluoro
Cl- cloro
Br- bromo
I- yodo
CN-ciano

OH⁻ hidroxo O²⁻ oxo O²⁻ peroxo S²⁻ tio HSO₃⁻ hidrogenosulfito NH₂⁻ amido

RADICALES A	ALQUILO
Fórmula	Nombre
CH ₃ -	Metil o metilo
CH ₃ -CH ₂ -	Etil o etilo
CH ₃ -CH ₂ -CH ₂ -	Propil o propilo
CH ₃ -CH ₂ -CH ₂ -CH ₂ -	Butil o butilo
CH ₃ -CH ₂ -CH-	Secbutil o secbutilo
1	
CH ₃	
ı	Terbutil o terbutilo
CH ₃ - C - CH ₃	
T	
CH ₃	
CH ₃ - CH - CH ₂ -	Isobutil o isobutilo
T	
CH ₃	

Hidruros especiales

- Los hidruros que se muestran en la tabla han sido nombrados por la IUPAC usando la nomenclatura de sustitución y se usan como progenitores para nombrar a otras sustancias
- El nombre azano y oxidano se usan para nombrar a derivados de NH₃ (amoniaco) y H₂O (agua)
- Quedan desechados fosfina, arsina y estibina

BH ₃	CH4	NH3	H₂O
borano	metano	azano	oxidano
	SiH₄	PH₃	H₂S
	silano	fosfano	sulfano
		AsH ₃ arsano	H₂Se selano
		SbH ₃ estibano	H₂Te telano

Normas en el uso de prefijos multiplicadores

- Cuando las entidades que se repiten son sencillas, los prefijos multiplicadores que se usan son: mono (1), di (2), tri (2), tetra (4), penta (5), hexa (6), hepta (7), etc.
- Cuando las entidades que se repiten son complejas o para evitar ambigüedades se usa bis (2), tris (3), tetrakis (4), pentakis (5), hexakis (6), etc.
- El prefijo mono- resulta superfluo; es decir, innecesario, sobrante. Solamente se necesita para enfatizar la estequiometría cuando se comentan sustancias relacionadas
- Los prefijos multiplicadores no son necesarios en las sustancias binarias si no existe ambigüedad

Normas en el uso de números de oxidación y número de carga

- En el caso de que la sustancia no sea neutra y haya que escribir la carga, se debe escribir en primer lugar el número y luego el signo positivo "+" o negativo "-"
- No se escribe el número 1, sólo el signo
- Puede usarse paréntesis para indicar que la carga es del conjunto de átomos que encierra el paréntesis
- Cuando se use el número de oxidación en el nombre de la sustancia, éste deberá darse en número romano encerrado entre paréntesis y escrito inmediatamente al lado del nombre del elemento sin dejar espacio
- Si se utiliza la carga del ión, ésta se escribe entre paréntesis (primero el número y luego el signo) inmediatamente al lado del nombre del elemento sin dejar espacio

Números de oxidación

1																	2
H +1,-1																	He 0
3	4											5	6	7	8	9	10
Li	Be											В	C	N ±1, ±2,	О	F	Ne
+l	+2											+3	+2,+4,-4	±3,+4,+5	-2	-1	0
11	12											13	14	15	16	17	18
Na	Mg											Al	Si	P +1,+3	S +2.+4	Cl	Ar
+1	+2											+3	+2,+4,-4	+5,-3	+2,+4 +6,-2	+1;+3,+5 +7, -1	0
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	\mathbf{Cr}	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As +1,+3	Se	Br	Kr
+1	+2	+3	+2,+3,+4	+2,+3,+4,+5	+2,+3,+4, +6	+2,+3,+4,+7	+2,+3	+2,+3	+2,+3	+1,+2	+2	+3	+2,+4,-4	+5,-3	+2,+4 +6,-2	+1;+3,+5 +7, -1	0
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I +1:+3:+5	Xe
+l	+2	+3	+2,+3,+4	+3,+4,+5	+2,+3,+4, +6	+4,+6,+7		+2,+3,+4, +6	+2,+4	+1	+2	+3	+2,+4	+1,+3 +5,-3	+4,+6,-2	+1;+3,+5 +7, -1	0
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	\mathbf{w}	Re	Os	Ir	Pt	Au	Hg +1,+2	Tl	Pb	Bi	Po	At +1;+3,+5 +7,-1	Rn
+l	+2	+3	+3,+4	+2,+3,+4,+5	+2,+3,+4, +6	+4,+5,+6,+7	+2,+3,+4,+7, +8	+3,+4	+2,+4	+1,+3	+1,+2	+1, +3	+2,+4	+3,+5	+2,+4	+7, -1	0
87	88	89	104														
Fr	Ra	Ac	Rf														
+1	+2	+3	+4														

Números de oxidación

- Los metales tienen números positivos
- Los no metales pueden tener números positivos y negativos
- Fíjate en las tres primeras columnas, tienen números de oxidación +1, +2 y +3
- Fíjate en las columnas 4, 5, 6, 7. Tienen varios números pero como mínimo tienen el del grupo, +4,+5,+6,+7.
- Observa los elementos del periodo 4 y grupos 8, 9 y 10. Todos son +2, +3.
- El grupo 11 tiene como mínimo +1, el grupo 12 tiene como mínimo +2, el grupo 13 tiene como mínimo +3, y así hasta el grupo 17.
- Pueden recordarse otros números de oxidación ya que parecen formar una serie matemática. Por ejemplo, los números de oxidación del grupo 17 son +7,+5,+3,+1. Si vamos restando 2 a partir del 7 obtenemos todo el conjunto. Todo esto sucede desde el grupo 13 al 17. Hay excepciones en cada grupo que poco a poco aprenderás.
- Si consultas diferentes tablas periódicas que contengan números de oxidación, comprobarás que existen ciertas diferencias en algunos elementos. Se debe a que se suelen omitir números de oxidación que no son importantes.
- Desde el grupo 14 al 17 se cumple que el número de oxidación negativo puede obtenerse al restar el número del grupo a 18

Cálculo de números de oxidación

- En las sustancias que son elementos químicos, cada átomo tiene número de oxidación cero
- Para los iones formados por un átomo, el número de oxidación coincide con su carga
- El oxígeno tiene número de oxidación –2 para la mayoría de los casos. Cuando se une al flúor el número de oxidación es +2. En compuestos donde el anión es O₂²⁻ tiene número de oxidación -1 y cuando el anión es O₂¹⁻ tiene número de oxidación fraccionario -1/2
- El hidrógeno tiene número de oxidación +1 cuando está unido a metales y –1 cuando está unido a no metales
- El flúor tiene número de oxidación –1 para todos sus compuestos
- En un compuesto neutro, la suma de todos los números de oxidación debe ser cero
- En un ión hecho de más de un átomo, la suma de los números de oxidación debe ser igual a la carga neta del ión

Elementos

- Metales (sólidos o líquidos) cuya fórmula coincide con la del átomo y que tiene el mismo nombre que la del átomo. Ejemplos: Fe, hierro; Cu, cobre; Hg, mercurio
- Átomos aislados de gases nobles cuya fórmula y nombre coincide con la del átomo. Ejemplos: Ar, argón; He, helio
- Sustancias moleculares formadas por la unión de varios átomos no metálicos y cuyo nombre se basa en el número de átomos que contiene la molécula
- Para dar el nombre se usan prefijos multiplicadores. El prefijo "mono" se reserva sólo para cuando el elemento no se presenta en la naturaleza en estado monoatómico. Por ejemplo, el elemento nitrógeno se presenta en la naturaleza en forma de moléculas diatómicas N₂, su nombre es dinitrógeno y cuando se pretenda hacer referencia a átomos aislados de nitrógeno se dice mononitrógeno.
- Existen nombres aceptados, como por ejemplo oxígeno para O₂, ozono para O₃
- En las recomendaciones de la IUPAC no aparece como aceptado nitrógeno para N₂

Iones positivos (cationes)

- Cationes monoatómicos. Proceden de átomos que han perdido electrones. El nombre es el del elemento con el número de carga añadido entre paréntesis. En las normas dictadas por la IUPAC no se menciona la posibilidad de omitir el número de carga cuando no exista ambigüedad
- Cationes homopoliatómicos. Estos cationes están formados por la unión de varios átomos de un mismo elemento. Su nombre se construye añadiendo un prefijo multiplicador al nombre del elemento y luego añadiendo el número de carga
- Cationes heteropoliatómicos. Están formados por la unión de más de dos átomos de elementos distintos. Para este nivel hay que saber el nombre de los siguientes: NH₄⁺, azanio (se acepta amonio) y H₃O⁺, oxidanio (se acepta oxonio)

Fórmula	N. Número de carga	N. Número de oxidación
Fe ²⁺	hierro(2+)	ion hierro(II)
Fe³+	hierro(3+)	ion hierro(III)
Au ⁺	oro(1+)	ion oro(I)
Au³+	oro(3+)	ion oro(III)
K ⁺	potasio(1+)	ion potasio
$\mathrm{Mg}^{2^{+}}$	magnesio(2+)	ion magnesio
H⁺	hidrógeno(1+)	ion hidrógeno

Fórmula	
O ₂ ⁺	dioxígeno(1+)
Hg ₂ ²⁺	dimercurio(2+)
H ₃ ⁺	trihidrógeno(1+)
S ₄ ²⁺	tetraazufre(2+)
Bi ₅ ⁴⁺	pentabismuto(4+)

Fórmula	nombre derivado de hidruro <i>"padre"</i>	nombre común aceptado
H ₃ O ⁺	oxidanio	oxonio *
$\mathrm{NH_4}^+$	azanio	amonio
PH ₄ ⁺	fosfanio	

Iones negativos (aniones)

- Aniones monoatómicos. Proceden de átomos que captan electrones. Se nombran modificando el nombre del elemento del que proceden. Se quita la terminación y se la sustituye por la terminación –uro o añadiendo directamente la terminación. La excepción es el oxígeno que cambia el nombre a óxido. La IUPAC sí menciona, para los aniones que cuando no exista ambigüedad puede omitirse el número de carga
- Aniones homopoliatómicos. Están formados por dos o más átomos de un mismo elemento. La carga eléctrica se considera que pertenece al conjunto. Se nombran añadiendo el número de carga al nombre modificado con la terminación -uro y añadiendo los prefijos multiplicadores que correspondan. El algunos casos hay nombres no sistemáticos que son aceptados
- Aniones heteropoliatómicos. Estos aniones están formados por la unión de átomos de dos o más elementos diferentes. Uno de los más importante es el anión (OH)⁻ o (HO)⁻ que se llama hidróxido. El resto que se estudiarán en este nivel pueden ser considerados derivados de ácidos

Fórmula	mediante número de carga
Cl ⁻	cloruro(1-) o cloruro
H-	hidruro(1-) o hidruro
N³-	nitruro(3-) o nitruro
As³-	arseniuro(3-) o arseniuro
S ²⁻	sulfuro(2-) o sulfuro
Se³-	seleniuro(3-) o seleniuro
O ²⁻	óxido(2-) u óxido
C ⁴⁻	carburo(4-) o carburo

Fórmula	mediante número de carga	nombre común aceptado
O ₂ -	dióxido(1-)	superóxido
O ₂ ²⁻	dióxido(2-)	peróxido
O ₃ -	trióxido(1-)	ozonido
I ₃ -	triyoduro(1-)	
N ₃	trinitruro(1-)	azida
S ₂ ²⁻	disulfuro(2-)	

Fórmula	Nombre	Fórmula	Nombre
H-	hidruro(1-), hidruro	F-	fluoruro(1–), fluroruro
Cl ⁻	cloruro(1–), cloruro	Br ⁻	bromuro(1–), bromuro
I.	yoduro(1–), yoduro	O ²⁻	óxido(2–), óxido
S ²⁻	sulfuro(2–), sulfuro	Se ²⁻	selenuro(2–), selenuro
Te ²⁻	telururo(2–), telururo	N³-	nitruro(3–), nitruro
P ³⁻	fosfuro(3-), fosfuro	As ³⁻	arsenuro(3–), arseniuro
Sb ³⁻	antimonuro(3-), antimonuro	C ⁴	carburo(4–), carburo
Si ⁴	siliciuro(4–), siliciuro	B ³⁻	boruro(3–), boruro

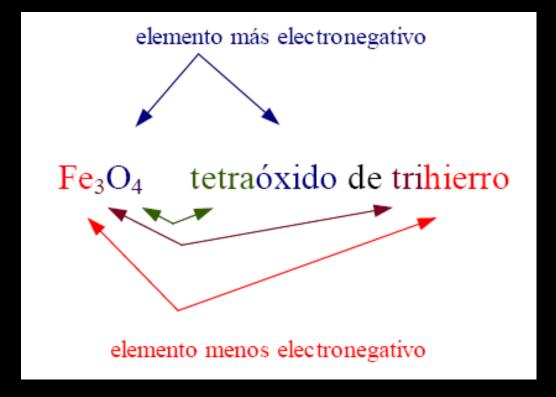
Fórmula	Nombre sistemático	Nombre aceptado
O ₂ -	dióxido(1–)	superóxido
O ₂ ²⁻	dióxido(2–)	peróxido
I ₃ -	triyoduro(1-)	
C ₂ ²⁻	dicarburo(2–)	acetiluro
S ₂ ²⁻	disulfuro(2–)	

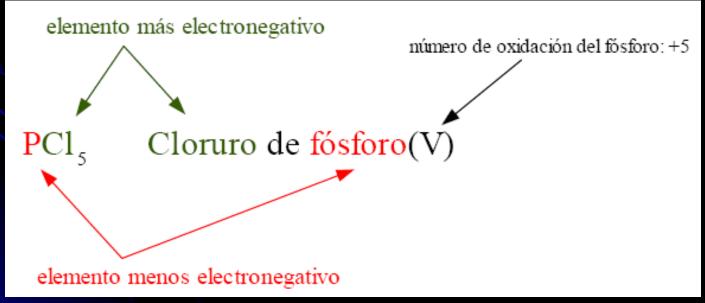
Compuestos binarios

 Estas sustancias son las formadas por la unión de dos elementos químicos

• OF₂:

- Usando prefijos multiplicadores, difluoruro de oxígeno
- Usando números de carga: esta sustancia no contiene iones, por lo que no se nombrará de esta manera
- Usando números de oxidación, fluoruro de oxígeno(II)


• CaCl₂:


- Usando prefijos multiplicadores, dicloruro de calcio
- Usando números de carga, cloruro(1-) de calcio(2+) o cloruro de calcio(2+)
- Usando números de oxidación, cloruro de calcio(II)
- Las disoluciones acuosas de HF, HCl, HBr, HI y H₂S reciben los nombres de ácido fluorhídrico, ácido clorhídrico, ácido yodhídrico y ácido sulfhídrico
- Esos nombres aunque muy extendidos no denotan una composición definida y la IUPAC dice que se encuentran fueran del ámbito de la nomenclatura sistemática

Ácidos hidrácidos

Fórmula	Nomenclatura estequiométrica	En disolución acuosa
HF	fluoruro de hidrógeno	ácido fluorhídrico
HC1	cloruro de hidrógeno	ácido clorhídrico
HBr	bromuro de hidrógeno	ácido bromhídrico
HI	yoduro de hidrógeno	ácido yodhídrico
H ₂ S	sulfuro de hidrógeno o sulfuro de dihidrógeno	ácido sulfhídrico
H ₂ Se	seleniuro de hidrógeno o seleniuro de dihidrógeno	ácido selenhídrico
H ₂ Te	telururo de hidrógeno o telururo de dihidrógeno	ácido telurhídrico
* HCN	cianuro de hidrógeno	ácido cianhídrico

El último compuesto de la tabla anterior está formado por tres elementos. Se ha incluido debido a que sus disoluciones acuosas son ácidas (hidrácido). Está formado por el ion cianuro, CN⁻, y el ion hidrógeno, H⁺.

Peróxidos

- Son combinaciones del anión peróxido, O₂²⁻, con un elemento metálico o no metálico
- El anión peróxido también puede ser nombrado como dióxido(2-)
- En estos compuestos el oxígeno actúa con número de oxidación -1
 y no puede simplificarse el subíndice dos, que indica que hay
 dos oxígenos unidos, cuando se formule
- Se puede usar la nomenclatura estequiométrica de igual manera que con los óxidos
- En el caso del uso del número de oxidación se nombrarían como peróxidos del elemento electropositivo, indicando su número de oxidación entre paréntesis, si tiene varios

Fórmula	N. Prefijos multiplicadores	N. Número de oxidación
Na ₂ O ₂	dióxido de disodio	peróxido de sodio
BaO ₂	dióxido de bario	peróxido de bario
CuO ₂	dióxido de cobre	peróxido de cobre (II)
* H ₂ O ₂	dióxido de dihidrógeno	peróxido de hidrógeno

*Para el compuesto H2O2, la IUPAC acepta el nombre común de agua oxigenada.

Hidróxidos

- Estos compuestos están formados por la unión de un catión y el anión hidróxido (OH)⁻
- La fórmula del ión hidróxido debería ser (HO)⁻, si se es consistente con la regla que se usa para ordenar sustancias binarias
- El catión que acompaña al anión suele ser el de un metal, pero también hay algún otro como el catión amonio (NH₄)⁺

Fórmula	N. Prefijos multiplicadores	N. Número de oxidación
Ca(OH) ₂	dihidróxido de calcio o hidróxido de calcio	hidróxido de calcio
NaOH	monohidróxido de sodio o hidróxido de sodio	hidróxido de sodio
Sn(OH) ₂	dihidróxido de estaño	hidróxido de estaño(II)
Sn(OH) ₄	tetrahidróxido de estaño	hidróxido de estaño(IV)

Ácidos

- El grupo más importante de estos ácidos son los oxoácidos
- La nomenclatura de estas sustancias puede realizarse de tres maneras:
 - nomenclatura de adición
 - nomenclatura de hidrógeno
 - nombres vulgares aceptados
- Los compuestos binarios como HCl o H₂S también pueden nombrarse por la nomenclatura de composición

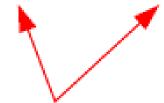
Nomenclatura de adición

- La nomenclatura sistemática de estas sustancias se realiza por la nomenclatura de adición
- En general, se considera que estas sustancias están formadas por la unión de un átomo central unido a otros átomos que lo rodean (se les llama ligandos)
- Se comienza nombrando los ligandos y diciendo las cantidades en que están usando prefijos multiplicadores, que se citan en orden alfabético sin tener en cuenta los prefijos. Finalmente, se nombra el átomo central sin ninguna terminación
- No se escribe la tilde en el nombre de los ligandos, sólo en el átomo central
- Ejemplo: CO(OH)₂, el carbono es el átomo central y está rodeado de un átomo de oxígeno y dos grupos OH
- El nombre es dihidroxidooxidocarbono
- No se usa ninguna referencia a que es un ácido

Nomenclatura de hidrógeno

- La costumbre a la hora de escribir las fórmulas de los ácidos ha sido: escribir primero los hidrógenos "ácidos" y luego, el átomo central; después, los hidrógenos unidos directamente al átomo central y finalmente, los átomos de oxígeno
- Así se acostumbra a escribir H₂CO₃ en vez de CO(OH)₂ y H₃PO₄ en vez de PO(OH)₃
- Para esta forma de escribir las fórmulas la IUPAC propone la nomenclatura de hidrógeno
- La palabra hidrogeno (sin tilde, pero pronunciada como si lo llevara) con un prefijo multiplicador, si es relevante, se une (sin espacio) al nombre de un anión (encerrado entre paréntesis y sin dejar espacio) obtenido por la nomenclatura de adición
- H₂CO₃, al estar escrita la fórmula de la manera tradicional usamos la nomenclatura de hidrógeno; así, los dos hidrógenos se dicen "dihidrogeno" y luego se nombra el grupo CO₃ como si fuera un anión "trioxidocarbonato"
- El nombre es hidrogeno(trioxidocarbonato)

Para el H₂SO₄:


entre paréntesis (nombre del anión según nomenclatura de adición)

(prefijo)(hidrogeno)(prefijo)(oxido)(prefijo)(raíz del átomo central acabado en -ato)

dihidrogeno(tetraoxidosulfato)

 H_2SO_4

HClO₄ ácido perclórico

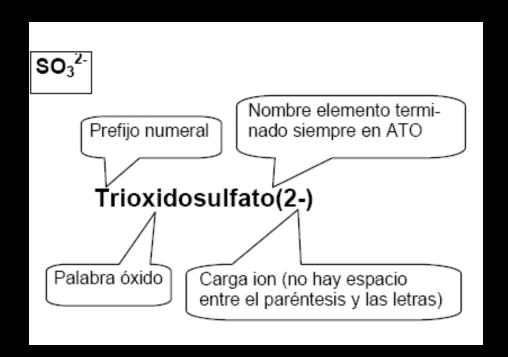
prefijo y sufijo que indican que el cloro presenta el mayor número de oxidación: +7 orden del número oxidación del átomo central, si puede presentar.....

prefijo	sufijo	cuatro	tres	dos	uno
per-	-ico	más alto			
	-ico	segundo	más alto	más alto	
	-oso	tercero	intermedio	más bajo	
hipo-	-oso	más bajo	más bajo		

	números de oxidación para formar oxoácidos			
Elementos	hipooso	-oso	-ico	perico
halógenos (Cl, Br, I)	+1	+3	+5	+7
anfigenos (S, Se, Te)	+2	+4	+6	
nitrogenoideos (N, P, As, Sb)	+1	+3	+5	
carbonoideos (C, Si)		(+2)*	+4	
boro			+3	
Mn*		(+4)*	+6	+7
Cr, Mo, W			+6	
V			+5	

Fórmula	Nombre aceptado	Fórmula	Nombre aceptado	Fórmula	Nombre aceptado
HC1O	ácido hipocloroso	HBrO	ácido hipobromoso	HIO	ácido hipoyodoso
HClO ₂	ácido cloroso	HBrO ₂	ácido bromoso	HIO_2	ácido yodoso
HClO ₃	ácido clórico	HBrO ₃	ácido brómico	HIO ₃	ácido yódico
HClO ₄	ácido perclórico	HBrO ₄	ácido perbrómico	HIO ₄	ácido peryódico

Fórmula	Nombre aceptado	Fórmula	Nombre aceptado
H ₂ SO ₄	ácido sulfúrico	H_2SeO_3	ácido selenioso
H ₂ SO ₃	ácido sulfuroso	H_2TeO_4	ácido telúrico
$H_2S_2O_7$	ácido disulfúrico	H ₂ TeO ₃	ácido teluroso
H_2SeO_4	ácido selénico	H ₆ TeO ₆	ácido ortotelúrico

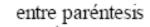

Fórmula	Nombre aceptado	
HNO ₂	ácido nitroso	
HNO₃	ácido nítrico	

Fórmula	Nombre aceptado
H_2CO_3	ácido carbónico
H ₂ SiO ₄	ácido silícico
H ₃ BO ₃	ácido bórico

Fórmula	Nombre aceptado	Fórmula	Nombre aceptado
H ₃ PO ₄	ácido fosfórico	HAsH ₂ O ₂	ácido arsínico
H ₃ PO ₃	ácido fosforoso	HAsH ₂ O	ácido arsinoso
H ₂ PHO ₃	ácido fosfónico	H₃SbO₄	cido antimónico
H_2PHO_2	ácido fosfonoso	H ₃ SbO ₃	ácido antimonoso
HPH ₂ O ₂	ácido fosfínico	H ₂ SbHO ₃	ácido estibónico
HPH ₂ O	ácido fosfinoso	H ₂ SbHO ₂	ácido estibonoso
H ₃ AsO ₄	ácido arsénico	HSbH ₂ O ₂	ácido estibínico
H ₃ AsO ₃	ácido arsenoso	HSbH ₂ O	ácido estibinoso
H ₂ AsHO ₃	ácido arsónico	H ₄ P ₂ O ₇	ácido difosfório
H ₂ AsHO ₂	ácido arsonoso	H ₄ As ₂ O ₇	ácido diarsénico

Oxoaniones

- La nomenclatura sistemática de estas sustancias se realiza por la nomenclatura de adición
- En este caso como es un anión, es decir, que el conjunto tiene carga, el átomo central añade la terminación -ato y se indica la carga encerrada entre paréntesis
- No obstante pueden utilizarse la nomenclatura del hidrógeno y la tradicional admitida

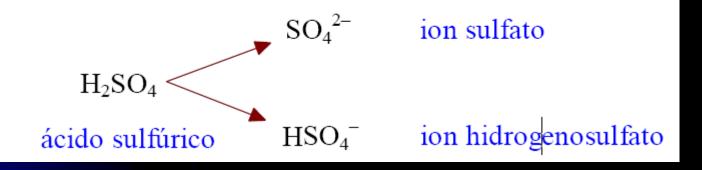


(prefijo de cantidad)(oxido)(prefijo de cantidad)(átomo central acabado en -ato)(carga del anión)

$$SO_4^{2-}$$
 tetraoxidosulfato(2-)
 $Cr_2O_7^{2-}$ heptaoxidodicromato(2-)
 $S_2O_7^{2-}$ heptaoxidodisulfato(2-)

Nomenclatura de hidrógeno

Para los aniones que contienen hidrógeno se puede usar esta nomenclatura descrita para los ácidos, indicando la carga del anión al final del nombre entre paréntesis.


(prefijo)(hidrogeno)(prefijo)(oxido)(prefijo)(átomo central acabado en -ato)(carga del anión)

HSO - hidrogeno(tetraoxidosulfato)(1-)

en el ácido		número de oxidación del átomo central	en el oxoanión	
prefijo	sufijo		prefijo	sufijo
per-	-ico	más alto	per-	-ato
	-ico	segundo		-ato
	-oso	tercero		-ito
hipo-	-oso	más bajo	hipo-	-ito

Como hay oxoácidos con varios hidrógenos, puede ocurrir que el anión derivado se forme por pérdida de algunos, pero no de todos los hidrógenos. En este caso, se antepone el prefijo hidrogeno-, dihidrogeno-, etc..., según el caso, al nombre del anión.

1.-Oxoaniones de los halógenos

Fórmula	Nomenclatura de adición	Nombre aceptado
OCl ⁻ (*)	clorurooxigenato(1-), oxidoclorato(1-)	hipoclorito
ClO ₂ -	dioxidoclorato(1-)	clorito
ClO ₃	trioxidoclorato(1-)	clorato
ClO ₄	tetraoxidoclorato(1-)	perclorato
OBr(*)	oxidobromato(1-), oxidobromato(1-)	hipobromito
BrO_2	dioxidobromato(1-)	bromito
BrO ₃	trioxidobromato(1-)	bromato
BrO ₄ -	tetraoxidobromato(1-)	perbromato
OI ⁻ (*)	yodurooxigenato(1-), oxidoyodato(1-)	hipoyodito
IO2	dioxidoyodato(1-)	yodito
IO ₃ ·	trioxidoyodato(1-)	yodato
IO ₄ -	tetraoxidoyodato(1-)	peryodato
(IO ₆) ⁵⁻	hexaoxidoyodato(5-)	ortoperyodato

(*)Las reglas dictan que el oxígeno es el átomo central. Se permite el nombre oxidohalogenato(1-) por comparación con el resto de miembros de la serie.

2.-Oxoaniones del azufre, selenio y teluro

Fórmula	Nombre de adición	Nombre aceptado
SO ₄ ²⁻	tetraoxidosulfato(2-)	sulfato
SO ₃ ²⁻	trioxidosulfato(2-)	sulfito
SO ₃ ² · S ₂ O ₇ ² · SeO ₄ ² ·	heptaoxidodisulfato(2-) o μ-óxido-bis(trioxidosulfato)(2-)	disulfato
SeO ₄ ²⁻	tetraoxidoselenato(2-)	selenato
SeO ₃ ²⁻	trioxidoselenato(2-)	selenito
TeO ₄ ²⁻	tetraoxidotelurato(2-)	telurato
TeO ₃ ²⁻	trioxidotelurato(2-)	telurito
(TeO ₆) ⁵⁻	hexaoxidotelurato(5-)	ortopertelurato

3.-Oxoaniones de nitrógeno

Fórmula	Nombre de adición	Nombre aceptado	Fórmula	Nombre de adición	Nombre aceptado
NO_2	dioxidonitrato(1-)	nitrito	NO ₃ ·	trioxidonitrato(1-)	nitrato

4.-Oxoaniones de fósforo, arsénico, antimonio

Fórmula	Nomenclatura de adición	Nombre aceptado
PO ₄ ³⁻	tetraoxidofosfato(3-)	fosfato
PO ₃ 3-	trioxidofosfato(3-)	fosfito
PHO ₃ ²⁻	hidrurotrioxidofosfato(2-)	fosfonato
PHO_2^{2-}	hidrurodioxidofosfato(2-)	fosfonito
$PH_2O_2^-$	dihidrurodioxidofosfato(2-)	fosfinato
PH₂O ⁻	dihidrurooxidofosfato(1-)	fosfinito
AsO ₄ ³⁻	tetraoxidoarsenato(3-)	arsenato
AsO ₃ ³⁻	trioxidoarsenato(3-)	arsenito
AsHO ₃ ²⁻	hidrurotrioxidoarsenato(2-)	arsonato
AsHO ₂ ² -	hidrurodioxidoarsenato(2-)	arsonito
AsH_2O_2	dihidrurodioxidoarsenato(1-)	arsinato
AsH ₂ O	dihidrurooxidoarsenato(1-)	arsinito
SbO ₄ ³ -	tetraoxidoantimonato(3-)	antimonato
P ₂ O ₇ ⁴⁻	heptaoxidodifosfato(4-)	difosfato
$As_2O_7^{4-}$	Heptaoxidodiarsenato(4-)	diarsenato

5.-Oxoaniones de carbono, silicio y boro

Fórmula	Nomenclatura de adición	Nombre aceptado
CO ₃ ²⁻	trioxidocarbonato(2-)	carbonato
SiO ₄ ⁴⁻	tetraoxidosilicato(4-)	silicato
BO ₃ 3-	trioxidoborato(3-)	borato

6.-Otros oxoaniones

Fórmula	Nomenclatura de adición	Nombre aceptado	Fórmula	Nomenclatura de adición	Nombre aceptado
MnO_4	tetraoxidomanganato(1-)	permanganato	CrO ₄ ²⁻	tetraoxidocromato(2-)	cromato
MnO_4^{2-}	tetraoxidomanganato(2-)	manganato	$Cr_2O_7^{2-}$	heptaoxidodicromato(2-)	dicromato

7.-Oxoaniones con hidrógenos hidrolizables

Fórmula	Nomenclatura de hidrógeno	Nombre de hidrógeno simplificado aceptado (*)
$H_2BO_3^-$	dihidrogeno(trioxidoborato)(1-)	dihidrogenoborato
	hidrogeno(trioxidoborato)(2-)	hidrogenoborato
HCO ₃ ²⁻	hidrogeno(trioxidocarbonato)(1-)	hidrogenocarbonato
H_2PO_4	dihidrogeno(tetraoxidofosfato)(1-)	dihidrogenofosfato
HPO ₄ ²⁻	hidrogeno(tetraoxidofosfato)(2-)	hidrogenofosfato
HPHO ₃ ²⁻	hidrogeno(hidrurotrioxidofosfato)(2-)	higrogenofosfonato
H_2PO_3	dihidrogeno(trioxidofosfato)(1-)	dihidrogenofosfito
HPO ₃ ²⁻	hidrogeno(trioxidofosfato)(2-)	hidrogenofosfito
HSO ₄	hidrogeno(tetraoxidosulfato)(1-)	hidrogenosulfato
HSO ₃ -	hidrogeno(trioxidosulfato)(1-)	hidrogenosulfito
$H_2P_2O_7^{2-}$	dihidrogeno(heptaoxidodifosfato)(2-)	
HCrO₄⁻	hidrogeno(tetraoxidocromato)(2-)	

^(*)La lista es limitada. Es decir, estos y ya está (según el libro rojo de la IUPAC edición española, página 137).

oxisales

- Estos compuestos se abordan como si de sustancias binarias se trataran, en el sentido de que están formados por dos partes, un catión y un anión (oxoanión)
- Estas sustancias se nombran por la nomenclatura de composición indicando la proporción entre los constituyentes (aunque uno de ellos sea poliatómico) mediante prefijos multiplicadores, números de carga o de oxidación
- El nombre del oxoanión puede estar escrito en cualquiera de las formas vistas en el apartado anterior

K₂SO₃

Nombre del anión (puede llevar prefijo numeral)

Prefijo numeral

Trioxidosulfato de dipotasio

Ejemplos:

Na₂CO₃ trioxidocarbonato de disodio o carbonato de sodio

Ca(NO₃)₂ bis(trioxidonitrato) de calcio o nitrato cálcico

Fe₂(SO₄)₃ tris(tetraoxidosulfato) de dihierro o sulfato de hierro (III)

KCIO₄ tetraoxidoclorato de potasio o perclorato potásico

Nombre del metal.

ClO₄ ion perclorato

Na⁺ ion sodio(1+)

NaClO,

perclorato de sodio(1+) perclorato de sodio

Oxisales ácidas

- Como se ha comentado, algunos oxoácidos están compuestos por varios hidrógenos; si éstos pierden algunos hidrógenos, pero no todos, se forman aniones que contienen hidrógeno
- Estos aniones cuando se combinan con cationes dan especies neutras llamadas sales (oxisales) ácidas
- Generalmente se nombran según la nomenclatura estequiométrica y la nomenclatura tradicional

Fórmula	oxoanión	nombre ion	catión	nombre del compuesto
CuHSO ₄	HSO ₄ -	hidrogeno(tetraoxidosulfato)(1-)	$C\mathfrak{u}^{\scriptscriptstyle +}$	hidrogeno(tetraoxidosulfato) de cobre
Cu(HSO ₄) ₂	HSO ₄ -	hidrogeno(tetraoxidosulfato)(1-)	Cu ²⁺	bis[hidrogeno(tetraoxidosulfato)] de cobre
LiHSO3	HSO₃⁻	hidrogeno(trioxidosulfato)(1-)	Li ⁺	hidrogeno(trioxidosulfato) de litio
NH ₄ HCO ₃	HCO ₃ -	hidrogeno(trioxidocarbonato)(1-)	NH4+	hidrogeno(trioxidocarbonato) de amonio
CaHPO ₄	HPO ₄ ²⁻	hidrogeno(tetraoxidofosfato)(2-)	Ca ²⁺	hidrogeno(tetraoxidofosfato) de calcio
$Mg(H_2PO_4)_2\\$	$H_2PO_4^-$	dihidrogeno(tetraoxidofosfato)(1-)	Mg^{2+}	bis[dihidrogeno(tetraoxidofosfato)] de magnesio
Al ₂ (HPO ₃) ₃	HPO ₃ ²⁻	hidrogeno(trioxidofosfato)(2-)	A13+	tris[hidrogeno(trioxidofosfato)] de dialuminio
$Fe(H_2PO_3)_3$	H ₂ PO ₃	dihidrogeno(trioxidofosfato)(1-)	Fe³+	tris[dihidrogeno(trioxidofosfato)] de hierro
FeHBO ₃	HBO ₃ ²⁻	hidrogeno(trioxidoborato)(2-)	Fe ³⁺	hidrogeno(trioxidoborato) de hierro
KH ₂ BO ₃	H ₂ BO ₃ ⁻	dihidrogeno(trioxidoborato)(1-)	K ⁺	dihidrogeno(trioxidoborato) de potasio
Cd(HS ₂ O ₇) ₂	HS ₂ O ₇	hidrogeno(heptaoxidodisulfato)(1-)	Cd ²⁺	bis[hidrogeno(heptaoxidodisulfato)] de cadmio
Na ₂ H ₂ P ₂ O ₇	$H_2P_2O_7^{2-}$	dihidrogeno(heptaoxidodifosfato)(2-)	Na ⁺	dihidrogeno(heptaoxidodifosfato) de disodio

Fórmula	oxoanión	nombre ion	catión	nombre usando nº oxidación del catión
CuHSO ₄	HSO ₄ -	hidrogenosulfato	Cu+	hidrogenosulfato de cobre(I)
Cu(HSO ₄) ₂	HSO ₄	hidrogenosulfato	Cu^{2+}	hidrogenosulfato de cobre(II)
LiHSO ₃	HSO₃¯	hidrogenosulfito	$\mathrm{Li}^{\scriptscriptstyle +}$	hidrogenosulfito de litio
NH4HCO3	HCO ₃	hidrogenocarbonato	NH4 ⁺	hidrogenocarbonato de amonio
CaHPO ₄	HPO ₄ ²⁻	hidrogenofosfato	Ca ²⁺	hidrogenofosfato de calcio
$Mg(H_2PO_4)_2\\$	H ₂ PO ₄	dihidrogenofosfato	Mg^{2+}	dihidrogenofosfato de magnesio
Al ₂ (HPO ₃) ₃	HPO ₃ ²⁻	hidrogenofosfito	A1 ³⁺	hidrogenofosfito de aluminio
Fe(H ₂ PO ₃) ₃	H ₂ PO ₃	dihidrogenofosfito	Fe³+	dihidrogenofosfito de hierro(III)
FeHBO ₃	HBO ₃ ²⁻	hidrogenoborato	Fe ²⁺	hidrogenoborato de hierro(II)
KH ₂ BO ₃	H ₂ BO ₃	dihidrogenoborato	K^{+}	dihidrogenoborato de potasio
Cd(HS ₂ O ₇) ₂	HS ₂ O ₇	hidrogenodisulfato	Cd ²⁺	hidrogenodisulfato de cadmio
Na ₂ H ₂ P ₂ O ₇	H ₂ P ₂ O ₇ ²⁻	dihidrogenodifosfato	Na ⁺	dihidrogenodifosfato de sodio

Sales ácidas de hidrácidos

- Los hidrácidos que contienen dos átomos de hidrógeno en su fórmula, pueden perder un H⁺ y dar lugar a la formación de un anión que contiene hidrógeno.
- Estos aniones se nombran anteponiendo la palabra "hidrógeno" al nombre del elemento que
- lo acompaña acabado en "-uro".
- Cuando estos aniones se combinan con cationes, generalmente metálicos, originan sales ácidas y se nombran de acuerdo a las reglas de los compuestos binarios

Fórmula	anión	nombre ion	Nomenclatura estequiométrica	N. usando nº de oxidación
KHS	HS-	hidrogenosulfuro	hidrogenosulfuro de potasio	hidrogenosulfuro de potasio
Ca(HSe)2	HSe⁻	hidrogenoseleniuro	bis(hidrogenoseleniuro) de calcio	hidrogenoseleniuro de calcio
Cu(HTe)2	HTe ⁻	hidrogenotelururo	bis(hidrogenotelururo) de cobre	hidrogenotelururo de cobre(II)
NH4HS	HS ⁻	hidrogenosulfuro	hidrogenosulfuro de amonio	hidrogenosulfuro de amonio

Tioácidos y derivados

 Los tioácidos se pueden considerar como derivados de los oxoácidos en los que alguno o algunos de los átomos de oxígeno que se unen al átomo central, son sustituidos por átomos de S

Fórmula	común (ácido)
$H_2S_2O_3$	tiosulfúrico
$H_2S_2O_2$	tiosulfuroso
H ₃ PO ₃ S	tiofosfórico

Fórmula	común
S ₂ O ₃ ² -	anión tiosulfato
S ₂ O ₂ ² -	anión tiosulfito
PO ₃ S ³ -	anión tiofosfato
$Na_2S_2O_2$	tiosulfito de sodio
FeS ₂ O ₃	tiosulfato de hierro(II)
K₃PO₃S	tiofostato de potasio