

IES Ramón y cajal, Madrid Examen de Matemáticas - Global de análisis 21-22 de Diciembre, 2020

Nombre:

Pregunta	1	2	3	4	5	Total
Puntos	21/2	1	2	2	21/2	10
Calificación						

1. (Modelo orientativo EVAU 2021 Madrid) Dada la función

$$f(x) = \begin{cases} \frac{2}{x+1} & \text{si } x \le 1, x \ne -1\\ \frac{\ln x}{x-1} & \text{si } x > 1 \equiv 1, \end{cases}$$

- (a) $(\frac{1}{2} punto)$ Estudiar la continuidad de f en x = 1.
- (b) (1 punto) Hallar las asíntotas de f, si existen.
- (c) (1 punto) Determinar el valor $x_0 < 1$ que verifica que la recta tangente a la gráfica de f en el punto $(x_0, f(x_0))$ tiene pendiente $\frac{-1}{2}$. Escribe la ecuación de dicha recta tangente.
- 2. (1 punto) Hallar el valor del parámetro m para que

$$\lim_{x \to 0} \frac{3mx^2 - 1 + \cos x}{\sin(x^2)} = 1$$

3. (2 puntos) Calcula a, b, y c para que la función

$$f(x) = \begin{cases} -x^2 + ax & \text{si } -1 \le x \le 3\\ bx + c & \text{si } 3 < x \le 5, \end{cases}$$

cumpla las hipótesis del teorema de Rolle en el intervalo [-1,5].

- 4. $(2 \ puntos)$ Sea $B(x) = ax + b\sqrt{x}$ la función de beneficios, en miles de euros, de una empresa. Se sabe que el beneficio máximo es de 50 000 euros y se alcanza para x = 100 unidades producidas. Determina $a \ y \ b$.
- 5. Dadas las funciones $f(x) = x^3$ y $g(x) = 2x^2 x$, se pide:
 - (a) (1 punto) Determinar razonadamente los puntos de intersección A y B de las curvas y = f(x) e y = q(x).
 - (b) $(\frac{1}{2} punto)$ Demostrar que $f(x) \ge g(x)$ si x > 0.
 - (c) (1 punto) Calcular razonadamente el área de la superficie limitada pos las dos curvas entre los puntos A y B.