EJERCICIOS TEMA 6. PARTE 3 REACCIONES QUÍMICAS Y CÁLCULOS ESTEQUIOMÉTRICOS

- 1° Explica los factores que afectan a la velocidad de las reacciones
- 2° Calcula la masa molar de las siguientes sustancias. (Recuerda que la masa molar es la masa que pesa un mol de cada sustancia y que se mide en g/mol)

Datos Masas atómicas:H=1; O=16; Ca=40; S=32; Al=27; N=14; C=12; Fe=55,8; Mg=24; P=31;

- a) H₂O
- b) Ca(OH)₂
- c) H₂5O₄
- d) $Al_2(NO_3)_3$

- e) CH₄
- f) $Fe_2(CO_3)_3$
- g) $Mg_3(PO_4)_2$
- 3° **Pasa de moles a gramos**, tienes que utilizar las masas molares que has calculado en el ejercicio anterior.
 - a) 3 mol de H₂O
 - b) 10 mol de Ca(OH)2
 - c) 5 mol de H₂SO₄
 - d) 0,02 mol de CH4
- 4º **Pasa de gramos a mol**, tienes que utilizar las masas molares que has calculado en el primer ejercicio.
 - a) 72 g de H₂O
 - b) 148 q de Ca(OH)2
 - c) 980 q de H₂SO₄
 - d) 4 q de CH₄
- 5° Calcula el primero **el número de mol** (Recuerda que <mark>1 mol de cualquier gas en condiciones normales: C.N. ocupa 22,4 L)</mark> y después la masa en g de estos gases (Recuerda que para pasar de mol a gramos o al revés tienes que usar la masa molar)

Datos masas atómicas: H= 1 O=16 C= 12 N=14

- a) 100 L de O2 medidos en C.N.
- b) 300 mL de NH₃ medidos en C.N.
- c) 40 L de CO2 medidos en C.N.
- 6° Pasa a mol o meléculas (según corresponda) <mark>sabiendo que 1 mol de "algo"contiene 6,022·10²³ moléculas de "algo")</mark>
 - a) 3 mol de H₂O

- c) 5 mol de H₂SO₄
- b) 5·10²⁵ moléculas de Ca(OH)₂
- d) 0,002 moléculas de CH₄

RECUERDA QUE EN LA CALCULADORA TIENES QUE PONER 6,022 TECLA $\frac{\text{EXP}}{\text{EXP}}$ o tecla $\frac{\text{x}10^{10}}{\text{Sin poner}}$ Sin poner x ni 10 (Estas teclas están en la parte inferior de la calculadora) seguido 23 (exponente).

Puedes verlo en el vídeo: https://www.youtube.com/watch?v=xeS1fpomKZs

70 1	Primer ejercicio de estequiometría, <mark>sigue los pasos de los apuntes y de los modelos de</mark>
	rcicios que en ellos tienes. Datos masas atómicas: H= 1 O=16 C= 12
	a) Ajusta la reacción de combustión: $C_3H_8 + O_2 \rightarrow CO_2 + H_2O$
	b) Calcula los gramos de O_2 necesarios para que reaccionen 500 g de propano (C_3H_8).
	c) En la misma reacción anterior, calcula los gramos de H_2O que se obtienen a partir de la misma cantidad de propano (C_3H_8).
8° .	Segundo ejercicio de estequiometría, <mark>sigue los pasos de los apuntes y de los modelos</mark>
	ejercicios que en ellos tienes. Datos masas atómicas: H= 1 Zn=65 Cl=35,5
	 a) Ajusta la reacción: Zn + HCl → ZnCl₂ + H₂ b) Calcula los gramos que de HCl que se necesitan para obtener 100 g de ZnCl₂ c) En la misma reacción anterior, calcula los gramos de H₂, con el mismo dato de ZnCl₂
	Tercer ejercicio de estequiometría, <mark>sigue los pasos de los apuntes y de los modelos de</mark>
<u>ejer</u>	rcicios que en ellos tienes. Datos masas atómicas: H= 1 O=16 Ca=40 C=12 N=14
	a) Ajusta la reacción: $CaCO_3 \ + \qquad HNO_3 \longrightarrow \qquad Ca(NO_3)_2 \ + \qquad H_2O \ + \qquad CO_2$
	b) Calcula la masa que se obtiene de Ca(NO ₃) ₂ cuando reacciona 1 kg de CaCO ₃ (Acuérdate
	que para pasar a mol la masa tiene que estar en gramos) c) Calcula el volumen en condiciones normales (CN) que se obtiene de dióxido de carbono.
10°	^o Cuarto ejercicio de estequiometría, <mark>sigue los pasos de los apuntes y de los modelos</mark>
de e	ejercicios que en ellos tienes. Datos masas atómicas: H= 1 O=16 N=14
	\boldsymbol{a}) Ajusta la reacción: $NH_4NO_3 \longrightarrow \qquad N_2 \ + \qquad H_2O \ + \qquad O_2$
	b) Calcula la masa de NH_4NO_3 que necesitamos para obtener 100 L de O_2 , medidos en C.N. c) Calcula la masa de agua que obtendremos.
11°	Quinto ejercicio de estequiometría, <mark>sigue los pasos de los apuntes y de los modelos</mark>
	ejercicios que en ellos tienes. Datos masas atómicas: S=32; Zn=65,4; O=16
	a) Ajusta la reacción: ZnS + O_2 \rightarrow ZnO + SO_2
	b)Calcula el volumen de dióxido de azufre, medido en CN, que se obtiene cuando reaccionan 195 g de ZnS c) Calcula la masa de O2 que se necesita
`	- /