1 00:00:00,000 --> 00:00:08,240 En este segundo vídeo tenemos un circuito en paralelo. Veis que las tres resistencias 2 00:00:08,240 --> 00:00:16,520 están en paralelo. Si las vemos, ahora concretamente, cada una de las resistencias, la salida de 3 00:00:16,520 --> 00:00:23,000 una de ellas no es la entrada de la siguiente, sino que vemos que las tres están en paralelo. 4 00:00:23,000 --> 00:00:29,040 Ponemos la pila de 6 voltios, que no lo había puesto en el circuito, y ahora la intensidad 5 00:00:29,040 --> 00:00:36,280 de corriente que va a suceder cuando llegue al punto de unión de las tres resistencias 6 00:00:36,280 --> 00:00:50,120 se bifurcará en tres intensidades de corriente. Una, dos y tres. ¿Vale? Veis que ahora las 7 00:00:50,120 --> 00:00:54,920 resistencias no están una detrás de otra, en el que la salida de una es la entrada de 8 00:00:54,920 --> 00:01:01,720 la siguiente. No, ahora están las tres en paralelo y tenemos que la intensidad de corriente 9 00:01:01,720 --> 00:01:06,560 total que viene en ese punto se divide en tres, se bifurca, es como un río que se bifurca 10 00:01:06,560 --> 00:01:15,480 en tres cauces diferentes. Vemos que las resistencias tienen distinta valor de en ohmio. Si las 11 00:01:15,480 --> 00:01:21,240 tres fueran iguales, se dividiría exactamente en tres partes iguales, pero como no lo son, 12 00:01:21,240 --> 00:01:26,840 se van a dividir en tres partes diferentes que luego calcularemos. Entonces tenemos aquí 13 00:01:26,840 --> 00:01:32,720 la intensidad total o neta, que sería la que viene por aquí, y llegaría aquí al punto 14 00:01:32,720 --> 00:01:36,200 en el que están las tres resistencias y se dividiría en tres. La suma de esas tres, 15 00:01:36,200 --> 00:01:40,960 que las hemos llamado intensidad uno, intensidad dos e intensidad tres, su suma será igual 16 00:01:40,960 --> 00:01:46,240 a la intensidad neta o total. Vamos a empezar con la resistencia neta. Las llamamos, como 17 00:01:46,240 --> 00:01:55,720 en el caso anterior, R1, R2 y R3 y calculamos una resistencia neta para el caso de un circuito 18 00:01:55,720 --> 00:02:02,000 en paralelo. R1 serán 5 ohmios, R2 serán 2 ohmios y R3 serán 10 ohmios. Siempre poner 19 00:02:02,000 --> 00:02:07,560 las unidades, por favor. Entonces, cuando hablamos del cálculo de una resistencia neta 20 00:02:07,560 --> 00:02:12,840 en circuitos en paralelo, las fórmulas ya no se suman, no son 17 ohmios, eso sería 21 00:02:12,840 --> 00:02:17,480 si estuvieran en serie. Ahora, el inverso de la resistencia neta o total será igual 22 00:02:17,480 --> 00:02:22,840 a la suma de los inversos de cada una de las resistencias implicadas. 1 partido de R1 más 23 00:02:22,840 --> 00:02:29,080 1 partido de R2 más 1 partido de R3. Bien, entonces, ponemos primero la fórmula para 24 00:02:29,080 --> 00:02:38,200 aclararnos y luego ponemos 1 partido de Rn total, o resistencia total, será igual a... 25 00:02:38,360 --> 00:02:43,000 Voy a dibujar el circuito al que queremos llegar. Nosotros queremos que esa resistencia 26 00:02:43,000 --> 00:02:48,880 neta sea el resultado de agrupar esas tres resistencias R1, R2 y R3 que están en paralelo 27 00:02:48,880 --> 00:02:54,600 y que nos salga como resultado una sola. Entonces, 1 partido de Rn es igual a 1 partido de 5 28 00:02:54,600 --> 00:03:01,840 ohmios más 1 partido de 2 ohmios más 1 partido de 10 ohmios. Bien, resolvemos esta suma de 29 00:03:01,840 --> 00:03:06,800 fracciones. Añadiendo el mismo como múltiplo, bueno, es fácil, sería 10 y nos quedaría 30 00:03:06,800 --> 00:03:19,280 8 décimos. Lo pondríamos que sería 2 más 5 y más 1. 8 décimos, pero claro, 8 décimos 31 00:03:19,280 --> 00:03:24,920 es el inverso de la resistencia neta o resistencia total, pero no queremos eso, queremos la resistencia 32 00:03:24,920 --> 00:03:36,800 neta. Habrá que invertir. Ponemos R1 partido de resistencia neta es igual a 8 décimos, 33 00:03:36,800 --> 00:03:41,640 pero nosotros queremos R neta. Entonces invertimos las dos fracciones y nos quedaría que la 34 00:03:41,640 --> 00:03:51,920 resistencia neta sería igual a 10 octavos. 10 octavos sería igual a... Lo calculamos 35 00:03:51,920 --> 00:04:00,200 y siempre ponerme las unidades. Yo quiero saber qué es el resultado. Aquí pones 1,25, 36 00:04:00,200 --> 00:04:09,960 que es 1,25 tartas. 1,25 ¿el qué? 1,25 ohmios, siempre con la unidad. Entonces, segunda parte 37 00:04:09,960 --> 00:04:15,640 sería en determinar la intensidad total. ¿Cómo calculamos la intensidad total? Bien, 38 00:04:15,640 --> 00:04:21,600 la intensidad total del circuito, vamos a poner en orden lo que estamos calculando arriba 39 00:04:21,600 --> 00:04:27,400 en el apartado A, era la resistencia neta y aquí va a ser la intensidad total del circuito 40 00:04:27,400 --> 00:04:35,440 o neta, es lo mismo. Entonces, esa intensidad total o neta, ¿a qué será igual? Será igual 41 00:04:35,440 --> 00:04:41,560 es la que viene desde el circuito, desde la pila y llega a la zona de bifurcación, que 42 00:04:41,560 --> 00:04:46,280 se bifurca en tres intensidades. Ahora tenemos que como es un circuito en paralelo todas 43 00:04:46,280 --> 00:04:49,280 las intensidades no son iguales, sino que ahora que la suma de esas tres que se han 44 00:04:49,280 --> 00:04:55,000 generado de esos tres cauces del río, que es I sub 1, I sub 2 e I sub 3, su suma será 45 00:04:55,000 --> 00:05:02,480 el cauce total que venía hasta esas tres resistencias. Luego, cuando se vuelvan a juntar, 46 00:05:02,480 --> 00:05:07,360 volverán a juntar el río original, el cauce total, la intensidad total. Entonces, esa 47 00:05:07,360 --> 00:05:13,920 intensidad total necesitaremos del potencial total y de la resistencia total o neta. Por 48 00:05:13,920 --> 00:05:20,360 ejemplo, para la ley de Ohm, Vn es igual a I sub n por R sub n. Vn son los 6 voltios 49 00:05:20,360 --> 00:05:28,720 y R sub n lo hemos calculado anteriormente, 1.25 ohmios. Entonces, 6 voltios entre 1.25 50 00:05:28,720 --> 00:05:56,920 ohmios será la intensidad neta. Lo calculamos. A ver. Y la intensidad neta será igual, tened 51 00:05:56,920 --> 00:06:07,240 en cuenta, que 4.76 amperios. Tened en cuenta que esa es la neta y 4.76 amperios será igual 52 00:06:07,240 --> 00:06:12,480 a la suma de I sub 1 más I sub 2 más I sub 3. Entonces, ya tenemos la intensidad neta 53 00:06:12,480 --> 00:06:18,760 y tenemos la resistencia neta. Vamos a pasar al tercer punto en el que lo que queremos 54 00:06:18,760 --> 00:06:25,400 calcular son las intensidades parciales. Hemos visto que hay tres intensidades parciales, 55 00:06:25,400 --> 00:06:30,560 la I sub 1, la I sub 2 y la I sub 3. Hemos visto que el río completo de agua, con un 56 00:06:30,560 --> 00:06:36,240 cauce de 4.76 amperios, llega hasta la zona de bifurcación de los tres cauces, o divididas 57 00:06:36,240 --> 00:06:43,280 a tres tramos que llegan a R1, R2 y R3, y se divide en tres cauces, un cauce I sub 1 58 00:06:43,280 --> 00:06:48,880 que tendrá una intensidad de corriente o una cantidad de agua, I sub 2 e I sub 3. Entonces, 59 00:06:48,880 --> 00:06:54,400 I sub 1 ¿qué será? Dependerá de su potencial y de su resistencia. Entonces, será V sub 60 00:06:54,400 --> 00:07:01,160 1 partido de R sub 1, según la ley de Ohm, pero V sub 1 ¿cuándo vale? ¿Qué sucede 61 00:07:01,160 --> 00:07:08,000 en los circuitos donde las resistencias están en paralelo? Para explicar esto habrá que 62 00:07:08,000 --> 00:07:12,280 hablar de las tensiones parciales. Hemos dicho que hay tres tensiones. Tendremos la tensión 63 00:07:12,280 --> 00:07:19,560 como pasado en los circuitos en serie, V1, V2 y V3. Vamos a dibujar el circuito. Tenemos 64 00:07:19,680 --> 00:07:29,680 las tres resistencias y vamos a enfrentar para que veáis que el voltaje que hay entre 65 00:07:29,680 --> 00:07:35,680 los puntos extremos de la pila, que son 6 voltios, se corresponde una vez con los extremos 66 00:07:35,680 --> 00:07:45,800 de cada una de las zonas de las resistencias. Con lo cual, eso... Voy a dibujarlo mejor. 67 00:07:45,800 --> 00:08:00,800 Pongo las tres resistencias en paralelo y entre esos dos puntos hemos dicho que hay 68 00:08:00,920 --> 00:08:06,240 6 voltios. Entonces, entre este punto y este punto habrá también 6 voltios. Entre este 69 00:08:06,240 --> 00:08:09,920 punto también y entre el otro punto también. Vamos a llamarle V sub 1 a ese voltaje, V 70 00:08:09,920 --> 00:08:14,320 sub 2 a ese voltaje y V sub 3 al siguiente. Entonces, ¿qué sucede? Pues que cuando las 71 00:08:14,320 --> 00:08:19,320 resistencias están en paralelo los voltajes son iguales. El voltaje neto o total, que 72 00:08:19,320 --> 00:08:25,240 son los 6 voltios, es igual a V sub 1, igual a V sub 2 e igual a V sub 3. Todos los voltajes 73 00:08:25,240 --> 00:08:30,560 son iguales. Y como todos los voltajes son iguales, en el cálculo de las intensidades 74 00:08:30,560 --> 00:08:38,160 parciales que hemos visto anteriormente... Vamos a ponerlo como que todas son iguales 75 00:08:38,160 --> 00:08:43,160 a iguales a 6 voltios. Entonces, en el cálculo de las intensidades parciales tenemos que 76 00:08:43,160 --> 00:08:48,040 I sub 1 era V sub 1 partido de R sub 1. Como V sub 1 son 6 voltios, que lo hemos dicho 77 00:08:48,040 --> 00:08:52,560 antes, y R sub 1, lo que vemos arriba, son 5 ohmios, pues ya tenemos el valor de intensidad 78 00:08:52,560 --> 00:08:57,000 sub 1. I sub 2 era V sub 2 partido de R sub 2. Como todos los potenciales son iguales, 79 00:08:57,000 --> 00:09:07,760 eran 6 voltios entre su resistencia, que son 2 ohmios. I sub 3 nos quedaría, pues sería 80 00:09:07,760 --> 00:09:15,960 V3 partido de R3. V3 son los 6 voltios igual partido de los 10 ohmios. Vamos a ponerlo 81 00:09:15,960 --> 00:09:31,600 y esto, ponemos los voltajes, lo calculamos con la calculadora. 1,2 amperios. Cuidado 82 00:09:31,600 --> 00:09:43,520 con las unidades. 3 amperios. Y aquí abajo serían 0,6 amperios he puesto, perdón, he 83 00:09:43,520 --> 00:09:50,080 puesto. Entonces, la suma de las tres intensidades, I sub 1 más I sub 2 más I sub 3, es igual 84 00:09:50,080 --> 00:09:55,280 a intensidad total. Entonces, si sumamos el 1,2 amperios, 3 amperios y 0,6 amperios, aunque 85 00:09:55,280 --> 00:10:04,600 he puesto un V amperios, nos van a salir los 4,76 amperios que hemos calculado antes, que 86 00:10:04,600 --> 00:10:12,400 era la neta. Por tanto, la bifurcación de ese cauce, del río que llegaba, en tres cauces, 87 00:10:12,400 --> 00:10:16,680 con distinta cantidad de agua, como hemos visto, 1,2, 3 y 0,6, cuando se vuelven a juntar, 88 00:10:16,680 --> 00:10:22,840 forman otra vez el cauce global del río, que eran 4,8 amperios. Y esto sería todo 89 00:10:22,840 --> 00:10:29,520 en cuanto al cálculo de un circuito en paralelo. Hasta luego.