1 00:00:00,180 --> 00:00:15,369 Venga, voy a resolver el ejercicio, ¿vale? Empezamos con el apartado A. Nos dice, calcula la productividad del trabajo expresada en alfombras por horas de trabajo. 2 00:00:15,369 --> 00:00:30,410 Es decir, nos está pidiendo la productividad del trabajo, que sabemos que la fórmula general es la producción entre, en este caso, el número de horas trabajadas, porque es lo que se está pidiendo. 3 00:00:30,410 --> 00:00:50,060 Por lo tanto, sabemos la producción, nos la da el enunciado, 32.500 alfombras, ¿vale? Y para calcular las horas trabajadas nos da los siguientes datos. 4 00:00:50,060 --> 00:00:56,140 Nos dice que hay 8 personas y que cada una utilizó 1.800 horas. 5 00:00:56,259 --> 00:01:01,060 Por lo tanto, ¿cuántas horas en total se ha utilizado en la empresa? 6 00:01:12,370 --> 00:01:13,010 Calculadora. 7 00:01:14,569 --> 00:01:20,209 Nos dice que son 32.500 entre 8 y entre 1.800. 8 00:01:21,129 --> 00:01:23,989 Nos da una productividad de 2,25. 9 00:01:31,920 --> 00:01:32,560 Alfombras. 10 00:01:35,290 --> 00:01:37,390 Y mirad que esto no lo he puesto, lo he troceado un pelín. 11 00:01:38,189 --> 00:01:41,870 Personas, se va con personas, por lo tanto nos queda alfombras, hora. 12 00:01:44,670 --> 00:01:47,430 Vamos ahora al apartado B, que es más fácil si cabe. 13 00:01:48,010 --> 00:01:53,689 Nos dice, calcula la productividad de la materia expresada en alfombras por ovillo de lana. 14 00:01:54,829 --> 00:01:59,709 Por lo tanto, nos está pidiendo la productividad de los recursos naturales, o de los recursos, mejor dicho. 15 00:01:59,989 --> 00:02:08,949 Que es igual a la producción dividido, en este caso, de los recursos. 16 00:02:08,949 --> 00:02:15,409 y no lo pide el número de ovillos ya que más fácil no no lo puede pedir 32 mil 500 alfombras 17 00:02:15,409 --> 00:02:27,590 igual dividido de en este caso nos dice el enunciado aquí que ha consumido 100.000 ovillos 18 00:02:27,590 --> 00:02:46,819 pues fácil y sencillo pues esto nos da son cinco ceros pues 3 y 25 todo para atrás 0,32 5 alfombras 19 00:02:46,819 --> 00:03:11,580 por ovillo vale hasta ahí todo correcto y ahora la parte voy a hacerlo más pequeñito y la parte c 20 00:03:13,539 --> 00:03:21,199 qué es la productividad global de la empresa que acordaros es la producción de la empresa 21 00:03:21,199 --> 00:03:31,860 medida en unidades monetarias en nuestro caso en euros dividido de los recursos o 22 00:03:31,860 --> 00:03:36,719 de lo que nos ha costado producirla también en euros de los costes vamos a poner costes 23 00:03:37,719 --> 00:03:44,080 en euros en nuestro caso tenemos que hemos hecho 32 mil 500 alfombras 24 00:03:45,419 --> 00:03:56,439 y el precio de cada alfombra unitario de ventas de 200 euros ya lo hemos pasado a euros y lo 25 00:03:56,439 --> 00:04:02,699 queréis ver sería sería alfombras aquí arriba y euros por alfombra lógicamente este y este se 26 00:04:02,699 --> 00:04:08,800 van y nos quedan euros y abajo tenemos que meter los factores que hemos utilizado es decir número 27 00:04:08,800 --> 00:04:14,319 de horas y los números de ovillos y todo eso pasado a dinero pues partimos de lo de antes 28 00:04:14,319 --> 00:04:25,620 hay ocho personas cada persona hace 1800 horas y cada hora de trabajo no lo dice aquí cuesta 13 29 00:04:25,620 --> 00:04:33,439 euros y el otro factor que tenemos de producción que nos ha dado los datos son que gasta 100.000 30 00:04:33,439 --> 00:04:51,040 ovillos y que cada ovillo vale 18 euros el ovillo o puede ver ovillo y ovillo se va persona y persona 31 00:04:51,040 --> 00:05:20,209 se va y nos queda todo en base de euros vale y esta curva esta operación nos va a dar un 32 00:05:20,209 --> 00:05:45,000 momento que me he equivocado con la calculadora nos da 3 con 27 euros vale euros con euros 33 00:05:45,000 --> 00:05:49,779 realmente euros con euros se va nos da 3 con 27 nos da un valor simplemente ahora explicaré 34 00:05:49,779 --> 00:05:59,639 lo que es ese valor que en la clase de ayer no lo dimos de argumenta como la empresa puede 35 00:05:59,639 --> 00:06:07,500 incrementar la producción global mira esto no es ni más ni menos que una división tengo un apartado 36 00:06:07,500 --> 00:06:14,439 y un apartado de comentó de matemáticas tengo dos formas de aumentar el resultado de la división o 37 00:06:14,439 --> 00:06:19,759 O bien, aumento A, o bien, disminuyo B. 38 00:06:20,899 --> 00:06:21,000 ¿No? 39 00:06:21,339 --> 00:06:22,800 Hasta aquí me seguís todos, entiendo yo. 40 00:06:23,279 --> 00:06:24,600 Pues claro, ¿qué tenemos en A? 41 00:06:26,259 --> 00:06:26,779 Producción. 42 00:06:27,040 --> 00:06:30,620 Es decir, opción 1, para aumentar la productividad global, es aumentar la producción. 43 00:06:31,959 --> 00:06:33,600 Opción 2, ¿qué es lo que tengo abajo? 44 00:06:33,839 --> 00:06:34,939 Los costes de producción. 45 00:06:35,620 --> 00:06:38,839 Otra forma de aumentar la producción es reducir esos costes. 46 00:06:38,839 --> 00:06:39,360 ¿No? 47 00:06:40,139 --> 00:06:41,860 Y por último, mezclar las dos. 48 00:06:41,860 --> 00:06:57,439 Es decir, de cara a evau, tendría que argumentar esas tres cosas. Aumento producción, perdón, reduzco costes o hago una mezcla de los dos. ¿Vale? Y con esto quedaría este ejercicio explicado y resuelto.