1 00:00:04,589 --> 00:00:06,509 A partir de agora, as clases se van a gravar aquí. 2 00:00:06,710 --> 00:00:07,370 Me llamo Lucas, 3 00:00:07,790 --> 00:00:10,449 sou o vostro novo profesor de matemáticas 4 00:00:10,449 --> 00:00:11,830 e, nada, 5 00:00:12,230 --> 00:00:13,330 esta vai ser a primeira clase 6 00:00:13,330 --> 00:00:14,769 de distancia 1. 7 00:00:16,109 --> 00:00:16,829 E, como já sabéis, 8 00:00:16,910 --> 00:00:18,870 non vai haber examen. 9 00:00:19,809 --> 00:00:20,429 Esta evolución 10 00:00:20,429 --> 00:00:22,670 vai valer... 11 00:00:22,670 --> 00:00:23,890 Vamos a tener unha actividade 12 00:00:23,890 --> 00:00:26,570 que vai costar el 10% de la nota 13 00:00:26,570 --> 00:00:27,949 e, nada, 14 00:00:28,030 --> 00:00:29,089 as outras dosas evoluciones 15 00:00:29,089 --> 00:00:31,429 podran ser 45 e 45, nada. 16 00:00:31,690 --> 00:00:33,649 A actividade será en base a clase de hoy, 17 00:00:33,649 --> 00:00:35,770 Vamos a ver o mínimo como múltiplo 18 00:00:35,770 --> 00:00:36,909 E o máximo como divisor 19 00:00:36,909 --> 00:00:38,969 E o pondré a lo largo da semana 20 00:00:38,969 --> 00:00:41,590 Tendréis hasta o domingo da semana que viene 21 00:00:41,590 --> 00:00:42,850 A las 12 da noite 22 00:00:42,850 --> 00:00:44,310 Para entregarla 23 00:00:44,310 --> 00:00:51,090 Os múltiplos 24 00:00:51,090 --> 00:00:52,250 De un número 25 00:00:52,250 --> 00:00:55,450 É como se continuáramos 26 00:00:55,450 --> 00:00:56,409 Con a tabla de múltiples 27 00:00:56,409 --> 00:00:59,009 Por exemplo, o múltiplo de 8 28 00:00:59,009 --> 00:01:00,170 Sería 29 00:01:00,170 --> 00:01:01,649 6 30 00:01:01,649 --> 00:01:04,069 4 31 00:01:04,069 --> 00:01:06,709 32 32 00:01:06,709 --> 00:01:10,129 40 33 00:01:10,129 --> 00:01:11,069 E 34 00:01:11,069 --> 00:01:13,909 Entón, se queremos calcular 35 00:01:13,909 --> 00:01:15,530 O mínimo 36 00:01:15,530 --> 00:01:18,670 Como múltiplo 37 00:01:18,670 --> 00:01:19,810 Dos números 38 00:01:19,810 --> 00:01:22,829 Por exemplo, entre 8 39 00:01:22,829 --> 00:01:26,799 E 12 40 00:01:26,799 --> 00:01:29,099 Estos son os múltiplos de 8 41 00:01:29,099 --> 00:01:30,299 E como son os de 12 42 00:01:30,299 --> 00:01:36,180 De 6 43 00:01:36,180 --> 00:01:38,340 Cual seria o mínimo múltiplo? 44 00:01:38,859 --> 00:01:42,120 Sería o mínimo múltiplo que comparten os dos 45 00:01:42,120 --> 00:01:43,099 En este caso 46 00:01:43,099 --> 00:01:46,099 Sería el 24 47 00:01:46,099 --> 00:01:48,939 Pero esto no siempre se va a hacer 48 00:01:48,939 --> 00:01:50,760 De cabeza de como cuento la vieja 49 00:01:50,760 --> 00:01:53,060 Esto hay una fórmula para hacerlo 50 00:01:53,060 --> 00:01:54,120 Que es la siguiente 51 00:01:54,120 --> 00:01:56,079 Lo primero que vamos a ver 52 00:01:56,079 --> 00:01:58,180 Es como factorizar 53 00:01:58,180 --> 00:02:00,019 Factorizar es descomponer 54 00:02:00,019 --> 00:02:01,519 El número primo 55 00:02:01,519 --> 00:02:04,859 Un número primo, como ya sabéis, es un número que solamente se puede 56 00:02:04,859 --> 00:02:06,760 Dividir entre el mismo y entre el uno 57 00:02:06,760 --> 00:02:07,579 ¿Vale? 58 00:02:08,259 --> 00:02:11,099 Entonces, para factorizar es expresar un número 59 00:02:11,099 --> 00:02:13,319 en función de sus factores 60 00:02:13,319 --> 00:02:14,340 ou números primos. 61 00:02:14,400 --> 00:02:15,199 Vamos a poner un ejemplo 62 00:02:15,199 --> 00:02:16,020 que se ve máis fácil. 63 00:02:19,810 --> 00:02:20,509 Para factorizar, 64 00:02:20,610 --> 00:02:21,069 sempre empezamos 65 00:02:21,069 --> 00:02:23,080 con o segundo, 66 00:02:23,180 --> 00:02:23,860 porque o primeiro é 1, 67 00:02:24,580 --> 00:02:25,159 entre 2, 68 00:02:26,159 --> 00:02:26,919 aquí se dice 8, 69 00:02:26,979 --> 00:02:27,520 entre 2, 70 00:02:28,259 --> 00:02:28,919 y sale 4. 71 00:02:29,919 --> 00:02:30,159 Logo, 72 00:02:30,259 --> 00:02:31,319 si podemos seguir con el 1, 73 00:02:31,419 --> 00:02:31,740 seguimos, 74 00:02:31,860 --> 00:02:32,800 y no tenemos que pasar a 2. 75 00:02:33,020 --> 00:02:33,319 Pero, bueno, 76 00:02:33,500 --> 00:02:34,340 en este caso podemos. 77 00:02:37,599 --> 00:02:37,939 2, 78 00:02:38,360 --> 00:02:39,240 2 entre 2, 79 00:02:40,259 --> 00:02:40,539 1. 80 00:02:40,659 --> 00:02:41,340 E iso significa 81 00:02:41,340 --> 00:02:42,599 que 82 00:02:42,599 --> 00:02:44,360 8 83 00:02:44,360 --> 00:02:46,659 é igual a 84 00:02:46,659 --> 00:02:49,199 2 por 2 por 2 85 00:02:49,199 --> 00:02:51,560 o 2 al cubo 86 00:02:51,560 --> 00:02:52,379 entón 87 00:02:52,379 --> 00:02:55,240 isto seria expresar 88 00:02:55,240 --> 00:02:57,340 8 con sus factores 89 00:02:57,340 --> 00:02:58,860 que se llama factorizada 90 00:02:58,860 --> 00:03:01,139 pero logo se facemos o mesmo 91 00:03:01,139 --> 00:03:02,000 con 12 92 00:03:02,000 --> 00:03:08,740 empezamos por el 2 simple 93 00:03:08,740 --> 00:03:10,699 6 94 00:03:10,699 --> 00:03:11,979 2 95 00:03:11,979 --> 00:03:13,280 3 96 00:03:13,280 --> 00:03:14,900 aqui el 2 ya non se puede 97 00:03:14,900 --> 00:03:16,900 el siguiente 98 00:03:16,900 --> 00:03:18,199 1 99 00:03:18,199 --> 00:03:22,520 Entonces, doce sería igual a dos por dos por tres 100 00:03:22,520 --> 00:03:27,539 Que es lo mismo que dos al cuadrado por tres 101 00:03:27,539 --> 00:03:28,539 ¿Vale? 102 00:03:29,099 --> 00:03:32,219 Entonces, para calcular el mínimo múltiplo de un número 103 00:03:32,219 --> 00:03:41,969 En este caso es ocho y doce 104 00:03:41,969 --> 00:03:48,909 Se coxen os factores comunes 105 00:03:48,909 --> 00:03:57,530 E non comunes 106 00:03:57,530 --> 00:04:00,469 E dos comunes, o de máis alto valor 107 00:04:00,469 --> 00:04:07,449 Agora, como veamos máis exemplos, o veréis 108 00:04:07,449 --> 00:04:09,650 Vale, aquí, que é comun? 109 00:04:10,210 --> 00:04:10,849 O 2, non? 110 00:04:11,270 --> 00:04:12,030 O 2 é comun 111 00:04:12,030 --> 00:04:14,330 Vale, se coxen o máis alto 112 00:04:14,330 --> 00:04:15,569 Qual é o máis alto? 113 00:04:16,569 --> 00:04:17,769 2 al cubo, non? 114 00:04:18,050 --> 00:04:24,800 Vale, e os non comunes 115 00:04:24,800 --> 00:04:25,639 Cuales? 3, non? 116 00:04:27,889 --> 00:04:28,610 O cubo 117 00:04:28,610 --> 00:04:31,029 O cubo son 8 118 00:04:31,029 --> 00:04:32,689 8 por 3, 24, non? 119 00:04:34,850 --> 00:04:37,509 Como podéis ver, 24 é o mínimo número 120 00:04:37,509 --> 00:04:38,069 Que nos arreglará 121 00:04:38,069 --> 00:04:43,389 Esto sería calcular el mínimo múltiplo 122 00:04:43,389 --> 00:04:45,189 De dos números factorizando 123 00:04:45,189 --> 00:04:46,389 Vamos a hacer 124 00:04:46,389 --> 00:04:47,829 3 ejercicios 125 00:04:47,829 --> 00:04:55,189 Múltiplo 126 00:04:55,189 --> 00:04:57,519 De 127 00:04:57,519 --> 00:05:03,060 12 128 00:05:03,060 --> 00:05:08,000 e 28 129 00:05:08,000 --> 00:05:11,120 e o tamén 130 00:05:11,120 --> 00:05:15,939 de 35 131 00:05:15,939 --> 00:05:20,000 e 120 132 00:05:20,000 --> 00:05:22,259 e o tamén 133 00:05:22,259 --> 00:05:24,060 de 134 00:05:24,060 --> 00:05:26,060 18 135 00:05:26,060 --> 00:05:29,079 e 32 136 00:05:29,079 --> 00:05:30,560 Vale? 137 00:05:31,540 --> 00:05:33,360 Entón, vamos a factorizar 138 00:05:33,360 --> 00:05:34,240 12 e 28 139 00:05:34,240 --> 00:05:38,339 factorizamos 12 140 00:05:38,339 --> 00:05:41,639 2, 6, 2, 3 141 00:05:41,639 --> 00:05:42,620 3 142 00:05:42,620 --> 00:05:46,839 Y 1, 2 al cuadrado 143 00:05:46,839 --> 00:05:48,399 Por 3 144 00:05:48,399 --> 00:05:51,019 Aquí ponemos 145 00:05:51,019 --> 00:05:53,540 28 146 00:05:53,540 --> 00:05:57,300 2, 7 147 00:05:57,300 --> 00:05:59,220 7, 1 148 00:05:59,220 --> 00:06:01,279 2 al cuadrado 149 00:06:01,279 --> 00:06:03,060 Por 7 150 00:06:03,060 --> 00:06:04,120 ¿Vale? 151 00:06:04,500 --> 00:06:05,319 ¿Cómo se hacía esto? 152 00:06:05,560 --> 00:06:07,019 Comunes y no comunes 153 00:06:07,019 --> 00:06:08,360 ¿Cuál es común? 154 00:06:09,379 --> 00:06:10,420 Pues son comunes 2 155 00:06:10,420 --> 00:06:12,019 Como ves al cuadrado en ambos lados 156 00:06:12,019 --> 00:06:12,759 se mantiene 157 00:06:12,759 --> 00:06:16,790 3 158 00:06:16,790 --> 00:06:19,129 por 7 159 00:06:19,129 --> 00:06:22,250 4 por 3 160 00:06:22,250 --> 00:06:23,790 12 161 00:06:23,790 --> 00:06:25,649 y 12 por 7 162 00:06:25,649 --> 00:06:27,689 son 163 00:06:27,689 --> 00:06:36,160 84 164 00:06:36,160 --> 00:06:42,180 continuamos con 165 00:06:42,180 --> 00:06:43,459 45 y 120 166 00:06:43,459 --> 00:06:52,699 2 no se puede 167 00:06:52,699 --> 00:06:55,540 ya pasaríamos directamente al 3 168 00:06:55,540 --> 00:06:57,500 15 169 00:06:57,500 --> 00:06:58,459 3 otra vez 170 00:06:58,459 --> 00:07:07,930 5, 5, 5, 3, 4, 4, 5 171 00:07:07,930 --> 00:07:13,110 E agora 120 172 00:07:13,110 --> 00:07:27,500 2, 60, 2, 30, 2, 15, 3, 5 173 00:07:27,500 --> 00:07:35,779 1, 2, 3, 2, 1, por 5 174 00:07:35,779 --> 00:07:38,120 Comunes e no comunes 175 00:07:38,120 --> 00:07:39,120 Cual é o común? 176 00:07:41,120 --> 00:07:42,819 O 3 é o común 177 00:07:42,819 --> 00:07:44,379 Se coge o grande, 3 ao cuadrado 178 00:07:44,379 --> 00:07:49,720 O 2 non é o común, pero o ponemos igual 179 00:07:49,720 --> 00:07:53,790 E o 5 é o común 180 00:07:53,790 --> 00:07:55,129 Pero non ten ninguna potencia 181 00:07:55,129 --> 00:07:56,490 E o 2 se queda igual 182 00:07:56,490 --> 00:08:03,050 A 9 por 8 183 00:08:03,050 --> 00:08:09,529 72 184 00:08:09,529 --> 00:08:11,189 2 por 5 185 00:08:11,189 --> 00:08:15,290 60 186 00:08:15,290 --> 00:08:20,589 Vale, e agora o último aquí 187 00:08:20,589 --> 00:08:25,129 18 188 00:08:25,129 --> 00:08:26,910 Como la vamos bien 189 00:08:26,910 --> 00:08:32,919 9 190 00:08:32,919 --> 00:08:34,679 3 191 00:08:34,679 --> 00:08:35,379 3 192 00:08:35,379 --> 00:08:40,320 2 por 3 193 00:08:40,320 --> 00:08:41,620 2 194 00:08:41,620 --> 00:08:42,620 2 195 00:08:42,620 --> 00:08:48,389 6 196 00:08:48,389 --> 00:08:49,269 2 197 00:08:49,269 --> 00:08:50,710 8 198 00:08:50,710 --> 00:09:00,549 Comunes e non comunes 199 00:09:00,549 --> 00:09:03,049 O 2 é o único común 200 00:09:03,049 --> 00:09:14,940 32 por 9 201 00:09:14,940 --> 00:09:16,320 Que serían 202 00:09:16,320 --> 00:09:18,440 320 203 00:09:18,440 --> 00:09:20,580 288 204 00:09:20,580 --> 00:09:34,110 288 205 00:09:34,110 --> 00:09:36,269 Vale, pois con isto se pierde 206 00:09:36,269 --> 00:09:37,750 E agora vamos a ver a continuación 207 00:09:37,750 --> 00:09:40,210 O máximo común divisor 208 00:09:40,210 --> 00:09:41,970 Igual que os números 209 00:09:41,970 --> 00:09:46,110 os números tamén ten divisores 210 00:09:46,110 --> 00:09:47,750 os múltiples sempre son 211 00:09:47,750 --> 00:09:48,690 máis maiores que o mesmo 212 00:09:48,690 --> 00:09:53,090 e os divisores de 40 213 00:09:53,090 --> 00:09:56,419 en que podemos dividirlo? 214 00:09:56,559 --> 00:09:57,659 podemos dividirlo entre 1 215 00:09:57,659 --> 00:09:59,779 podemos dividirlo entre 2 216 00:09:59,779 --> 00:10:02,000 podemos dividirlo entre 4 217 00:10:02,000 --> 00:10:04,639 podemos dividirlo entre 5 218 00:10:04,639 --> 00:10:08,259 podemos dividirlo entre 8 219 00:10:08,259 --> 00:10:10,779 podemos dividirlo entre 10 220 00:10:10,779 --> 00:10:13,860 podemos dividirlo entre 20 221 00:10:13,860 --> 00:10:16,440 Y entre 40 222 00:10:16,440 --> 00:10:18,320 Entre M 223 00:10:18,320 --> 00:10:19,580 ¿Vale? 224 00:10:20,539 --> 00:10:26,710 Vale, si cojamos para mí, por ejemplo 225 00:10:26,710 --> 00:10:28,549 Los divisores de 226 00:10:28,549 --> 00:10:30,529 28 227 00:10:30,529 --> 00:10:31,929 ¿Vale? 228 00:10:34,090 --> 00:10:35,610 Tenemos el 1 229 00:10:35,610 --> 00:10:38,129 Tenemos el 2 230 00:10:38,129 --> 00:10:42,509 Tenemos el 7 231 00:10:42,509 --> 00:10:45,610 Y tenemos 232 00:10:45,610 --> 00:10:48,250 El 28 233 00:10:48,250 --> 00:10:49,970 ¿Vale? 234 00:10:49,970 --> 00:10:52,370 ¿Cuál sería el máximo de un divisor? 235 00:10:52,809 --> 00:10:54,629 Sería el divisor más grande 236 00:10:54,629 --> 00:10:55,889 que los dos compartos 237 00:10:55,889 --> 00:10:56,750 En este caso 238 00:10:56,750 --> 00:10:59,169 sería el 2 239 00:10:59,169 --> 00:11:01,950 Pero bueno, podría ser 240 00:11:01,950 --> 00:11:02,830 mucho más grande 241 00:11:02,830 --> 00:11:04,190 Ahora pondré más ejemplos 242 00:11:04,190 --> 00:11:06,470 Esto de la misma manera que hemos hecho lo otro 243 00:11:06,470 --> 00:11:08,309 Aquí también hay que factorizar 244 00:11:08,309 --> 00:11:09,309 pero se aplica otra vez 245 00:11:09,309 --> 00:11:10,889 Vamos a verlo 246 00:11:10,889 --> 00:11:26,649 Al cubo 247 00:11:26,649 --> 00:11:29,710 4, 5 y 28 248 00:11:29,710 --> 00:11:33,610 2 249 00:11:33,610 --> 00:11:34,769 12 250 00:11:34,769 --> 00:11:35,529 2 251 00:11:35,529 --> 00:11:36,929 7 252 00:11:36,929 --> 00:11:37,889 7 253 00:11:37,889 --> 00:11:38,830 Y 1 254 00:11:38,830 --> 00:11:39,610 2 255 00:11:39,610 --> 00:11:47,470 Por 7 256 00:11:47,470 --> 00:11:50,769 Vale, aquí me he equivocado 257 00:11:50,769 --> 00:11:52,590 Me estoy dando cuenta ahora 258 00:11:52,590 --> 00:11:58,110 Me estoy dando cuenta ahora 259 00:11:58,110 --> 00:11:59,669 Esto por no parar de pedir 260 00:11:59,669 --> 00:12:01,470 2 261 00:12:01,470 --> 00:12:03,210 Y 4 262 00:12:03,210 --> 00:12:04,750 Aquí es el 2 263 00:12:04,750 --> 00:12:07,309 Pero también es el 4 264 00:12:07,309 --> 00:12:11,250 Y el 14 265 00:12:11,250 --> 00:12:13,029 No sé por qué lo necesito más 266 00:12:13,029 --> 00:12:18,299 Por hacerlo de cabeza 267 00:12:18,299 --> 00:12:19,840 Disculpadme 268 00:12:19,840 --> 00:12:22,039 4, 7, 8 269 00:12:22,039 --> 00:12:25,000 Sería el 4 270 00:12:25,000 --> 00:12:26,340 ¿Vale? 271 00:12:27,980 --> 00:12:29,559 Entonces, ¿cómo se hace esto ahora? 272 00:12:30,059 --> 00:12:31,200 Pues en el otro copiamos 273 00:12:31,200 --> 00:12:32,200 Los comunes 274 00:12:32,200 --> 00:12:34,679 El más alto de los comunes y el no común 275 00:12:34,679 --> 00:12:37,240 O sea, aquí solamente se coge de los comunes 276 00:12:37,240 --> 00:12:38,639 El más bajo, que es común 277 00:12:38,639 --> 00:12:39,519 El 2, 8 278 00:12:39,519 --> 00:12:41,480 Aquí está el cubo y aquí está el cuadrado 279 00:12:41,480 --> 00:12:44,100 Sería el cuadrado 280 00:12:44,100 --> 00:12:45,539 ¿Vale? 281 00:12:47,240 --> 00:12:48,639 Vamos a hacer un ejercicio 282 00:12:48,639 --> 00:12:49,379 Y lo vemos 283 00:12:49,379 --> 00:12:51,480 Esto un poco más claro 284 00:12:51,480 --> 00:12:58,039 Imaginemos un divisor 285 00:12:58,039 --> 00:13:00,080 De 286 00:13:00,080 --> 00:13:06,529 36 287 00:13:06,529 --> 00:13:13,639 Y 38 288 00:13:13,639 --> 00:13:22,470 Y de 62 y 84 289 00:13:22,470 --> 00:13:24,889 ¿Cómo se hace esto? 290 00:13:25,129 --> 00:13:25,990 Factorizamos 291 00:13:25,990 --> 00:13:28,230 ¿Está grabando bien? 292 00:13:28,549 --> 00:13:28,669 Sí 293 00:13:28,669 --> 00:13:31,289 Factorizamos 294 00:13:31,289 --> 00:13:36,820 2, 21, ya no son 92 295 00:13:36,820 --> 00:13:40,720 23, 7, 7 296 00:13:40,720 --> 00:13:42,080 ¿Vale? 297 00:13:42,080 --> 00:13:46,320 2, 3, 7 298 00:13:46,320 --> 00:13:48,559 y 36 299 00:13:48,559 --> 00:13:52,100 2 300 00:13:52,100 --> 00:13:57,100 9 301 00:13:57,100 --> 00:13:58,779 3 302 00:13:58,779 --> 00:14:04,809 2 303 00:14:04,809 --> 00:14:07,909 cuadrado por 3 304 00:14:07,909 --> 00:14:09,110 la cuadrada 305 00:14:09,110 --> 00:14:11,929 vale, como se hacía esto? 306 00:14:12,629 --> 00:14:13,769 solamente los comunes 307 00:14:13,769 --> 00:14:15,889 10 comunes, el 2 y el 3 308 00:14:15,889 --> 00:14:17,250 y se coge más bajo 309 00:14:17,250 --> 00:14:18,330 esto se está dando a 1 310 00:14:18,330 --> 00:14:19,629 2 por 3 311 00:14:19,629 --> 00:14:24,879 igual a 6 312 00:14:24,879 --> 00:14:26,460 ok? 313 00:14:27,299 --> 00:14:32,299 Seguimos con el 54 y 38 314 00:14:32,299 --> 00:15:07,480 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 315 00:15:07,500 --> 00:15:14,250 19 y al primo 316 00:15:14,250 --> 00:15:15,190 3 317 00:15:15,190 --> 00:15:21,259 19 318 00:15:21,259 --> 00:15:22,159 ¿Vale? 319 00:15:22,259 --> 00:15:23,379 Comunes y no comunes 320 00:15:23,379 --> 00:15:24,460 Solamente 2 321 00:15:24,460 --> 00:15:25,779 Entonces 322 00:15:25,779 --> 00:15:27,100 2 323 00:15:27,100 --> 00:15:29,340 Sería la solución 324 00:15:29,340 --> 00:15:31,720 Y si hacemos este último 325 00:15:31,720 --> 00:15:33,519 62, 84 326 00:15:33,519 --> 00:15:42,000 He puesto un ejemplo muy malo 327 00:15:42,000 --> 00:15:44,139 Porque se resume muy rápido 328 00:15:44,139 --> 00:15:44,879 Vamos a cambiarlo 329 00:15:44,879 --> 00:15:46,320 Para que sea un poquito más interesante 330 00:15:46,320 --> 00:15:47,019 No es que este malo 331 00:15:47,019 --> 00:15:58,289 38 332 00:15:58,289 --> 00:16:03,519 48 333 00:16:03,519 --> 00:16:05,879 entre 2 334 00:16:05,879 --> 00:16:07,419 24 335 00:16:07,419 --> 00:16:08,639 entre 2 336 00:16:08,639 --> 00:16:10,080 12 337 00:16:10,080 --> 00:16:11,120 entre 2 338 00:16:11,120 --> 00:16:11,820 6 339 00:16:11,820 --> 00:16:12,980 entre 2 340 00:16:12,980 --> 00:16:13,860 3 341 00:16:13,860 --> 00:16:16,340 3, 1, 2, 3, 4 342 00:16:16,340 --> 00:16:19,700 por 3 343 00:16:19,700 --> 00:16:21,159 y 84 344 00:16:21,159 --> 00:16:25,639 entre 2 son 345 00:16:25,639 --> 00:16:27,399 42 346 00:16:27,399 --> 00:16:28,580 entre 2 son 347 00:16:28,580 --> 00:16:29,519 21 348 00:16:29,519 --> 00:16:31,299 que entre 3 349 00:16:31,299 --> 00:16:32,500 son 7 350 00:16:32,500 --> 00:16:33,080 entre 7 351 00:16:33,080 --> 00:16:33,620 1 352 00:16:33,620 --> 00:16:34,860 2 353 00:16:34,860 --> 00:16:39,159 3 por 7 354 00:16:39,159 --> 00:16:40,740 Vale, que é comun 355 00:16:40,740 --> 00:16:42,399 2 356 00:16:42,399 --> 00:16:47,200 E o 2 se pone pequeno 357 00:16:47,200 --> 00:16:48,940 En este caso é al cuadrado 358 00:16:48,940 --> 00:16:50,980 E o 3 tamén é comun 359 00:16:50,980 --> 00:16:54,759 Por 3 360 00:16:54,759 --> 00:16:57,399 12 361 00:16:57,399 --> 00:16:59,600 Que noso dividiendo 60 y 2 entre 2 362 00:16:59,600 --> 00:17:00,440 Daba 31 363 00:17:00,440 --> 00:17:02,580 Mira, esto sería 364 00:17:02,580 --> 00:17:05,420 El tema de los mínimos comunes múltiplos 365 00:17:05,420 --> 00:17:06,700 Y los máximos comunes divisores