1 00:00:01,330 --> 00:00:03,109 Pues esta es la historia de siempre. 2 00:00:03,589 --> 00:00:04,750 ¿Cuál es la última demostración? 3 00:00:04,849 --> 00:00:06,690 Me dicen usando congruencia de triángulos. 4 00:00:06,870 --> 00:00:08,609 Hombre, no conocemos otra manera. 5 00:00:09,890 --> 00:00:13,609 Explica por qué la diagonal de un paralelogramo lo divide en dos triángulos congruentes. 6 00:00:13,609 --> 00:00:17,570 Es decir, por qué la diagonal de un paralelogramo lo divide en dos triángulos que son iguales. 7 00:00:17,969 --> 00:00:18,410 Vale. 8 00:00:19,070 --> 00:00:20,769 ¿Cómo son los lados del paralelogramo? 9 00:00:21,989 --> 00:00:26,489 Y me dicen, dado que hay lados paralelos, puedes utilizar el concepto de ángulos alternos. 10 00:00:26,730 --> 00:00:26,969 Vale. 11 00:00:27,750 --> 00:00:28,629 Bueno, pues repito. 12 00:00:28,629 --> 00:00:40,329 Usando congruencia de triángulos, queremos demostrar que los triángulos que forman una diagonal con todos los lados son los triángulos congruentes 13 00:00:40,329 --> 00:00:42,570 Y luego, ¿qué ocurre con los lados del paralelogramo? 14 00:00:42,969 --> 00:00:45,289 Bueno, pues vamos a hacer nuestra figurita y vamos a trabajar 15 00:00:45,289 --> 00:00:57,549 Bueno, pues el primer paso es sencillo, vamos a dibujar rectas paralelas y a partir de aquí ya veremos cómo dibujamos nuestro paralelogramo 16 00:00:57,549 --> 00:01:01,189 Claro, para esto ya tenemos que tener un poquito más de cuidado. 17 00:01:01,789 --> 00:01:07,609 Entonces, lo que voy a hacer es que voy a empezar con el lápiz y luego voy a acabar de dibujar con el rotulador. 18 00:01:07,609 --> 00:01:19,909 Pues aquí hago una recta y aquí tengo una recta que es paralela a esta recta. 19 00:01:19,930 --> 00:01:27,989 Muy bien, ya tengo aquí una recta paralela y ahora lo que quiero hacer es dos rectas que son paralelas 20 00:01:27,989 --> 00:01:31,310 Que me van a montar el paralelogramo que quiero hacer 21 00:01:31,310 --> 00:01:41,829 De problemas así es mucho más fácil 22 00:01:41,829 --> 00:01:46,450 Y ahora cojo el paralelogramo y lo cierro por aquí 23 00:01:46,450 --> 00:01:51,730 Vale, bueno, pues ahora ya solamente me queda nombrar 24 00:01:51,730 --> 00:01:56,870 ¿En los paralelogramos tenemos criterios para...? 25 00:01:56,870 --> 00:02:02,790 No, desafortunadamente con cuatro vértices ya la cosa se nos va al garete 26 00:02:02,790 --> 00:02:05,069 Con lo bien que nos lleva con los triángulos 27 00:02:05,069 --> 00:02:09,090 Y lo mal que nos va a ir con los paralelogramos 28 00:02:09,090 --> 00:02:11,569 Lo complicado que va a ser 29 00:02:11,569 --> 00:02:13,330 A veces nombrar las cosas 30 00:02:13,330 --> 00:02:13,990 Pero bueno 31 00:02:13,990 --> 00:02:15,710 Pues ya lo tenemos 32 00:02:15,710 --> 00:02:18,090 Entonces ahora vamos a dibujar los lados 33 00:02:18,090 --> 00:02:19,849 Con un rotulador 34 00:02:19,849 --> 00:02:21,770 Mira, no, lo vamos a dejar así como está 35 00:02:21,770 --> 00:02:24,129 Un poquito más desnudo 36 00:02:24,129 --> 00:02:25,669 Dejémoslo un poquito más limpio 37 00:02:25,669 --> 00:02:28,629 Entonces lo que quiero hacer ahora es dibujar la diagonal 38 00:02:28,629 --> 00:02:30,370 Pues ¿qué diagonal voy a dibujar? 39 00:02:30,430 --> 00:02:31,129 Pues voy a dibujar esta 40 00:02:31,129 --> 00:02:33,310 Podría dibujar la otra, no habría ningún problema 41 00:02:33,310 --> 00:02:45,129 Pero bueno, recuerda que la diagonal es el segmento que une dos vértices que no son contiguos en un polígono que no es un triángulo. 42 00:02:45,490 --> 00:02:51,150 Es decir, a partir del cuadrilátero de cuatro lados ya puedo empezar a dibujar diagonales. 43 00:02:51,789 --> 00:02:56,069 En el cuadrilátero, en el pentágono, en el hexágono existen diagonales. 44 00:02:56,069 --> 00:03:01,270 Y bueno, son muchas, pero en este caso afortunadamente solo tenemos esta. 45 00:03:01,270 --> 00:03:04,330 Y si hiciera con esto me pasaría tres cuartos de lo mismo 46 00:03:04,330 --> 00:03:08,610 Me dicen, por favor, demuéstrame que este triángulo es igual que este 47 00:03:08,610 --> 00:03:10,509 ¿Usando qué? 48 00:03:10,909 --> 00:03:13,610 Pues lo único que sabemos usar, la congruencia de triángulos 49 00:03:13,610 --> 00:03:21,860 Entonces, el triángulo morado quiero demostrar que es igual que el triángulo verde 50 00:03:21,860 --> 00:03:25,319 Bueno, pues para esto, no te olvides 51 00:03:25,319 --> 00:03:27,560 Me han dado una pequeña pista 52 00:03:27,560 --> 00:03:31,319 Y la pista que me han dado es muy, muy, muy maja 53 00:03:31,319 --> 00:03:36,340 Que es que, oye, ¿tienes ángulos alternos? 54 00:03:37,639 --> 00:03:52,319 Bien, entonces aquí tengo, por ejemplo, las rectas R y S en un sentido, R y S, y en el otro sentido tengo las rectas T y U. 55 00:03:52,319 --> 00:04:06,180 ¿Vale? Bueno, pues ahora lo que voy a hacer es que voy a analizar los ángulos que forma mi diagonal con los distintos pares de rectas, que son R y S y T y U. 56 00:04:06,180 --> 00:04:23,790 Y para ello lo que voy a hacer son dibujos aparte. Voy a dibujar, fíjate, para que no me distraiga, las rectas R y S y las rectas, no, estas son T y U y las rectas R y S. 57 00:04:23,889 --> 00:04:43,790 Y aquí, generalmente, dibujo. Esto es puramente conceptual. Esto no tiene ningún tipo de rigor, digamos, de dibujo. 58 00:04:44,930 --> 00:04:54,329 Entonces, aquí tengo, por ejemplo, las rectas T y U. Esta es mi diagonal. Y estas son las rectas R y S. Y esta es mi diagonal. 59 00:04:54,329 --> 00:05:00,389 Vale, bueno, pues vamos a estudiar ángulos alternos internos. 60 00:05:00,889 --> 00:05:08,610 Aquí, ¿cuántos ángulos alternos internos tengo? Pues fíjate, aquí tengo el ángulo verde y este ángulo es exactamente igual, ¿no? 61 00:05:10,670 --> 00:05:16,629 Vale, este sería el ángulo verde y este sería el ángulo verde. Estos dos ángulos son iguales. 62 00:05:17,069 --> 00:05:23,870 Vale, ¿quién se corresponde con quién? Por cierto, vamos a hacer una cosa importante, que no se nos olvide. 63 00:05:23,870 --> 00:05:29,769 Este es un detalle que correspondería al lado D y al lado B 64 00:05:29,769 --> 00:05:32,490 Lo que he hecho ha sido quitar todo el resto de cosas 65 00:05:32,490 --> 00:05:35,569 Simplemente me he quedado con las rectas T y U y de B 66 00:05:35,569 --> 00:05:37,209 ¿Este ángulo quién sería? 67 00:05:37,329 --> 00:05:40,029 Pues mira, este sería el ángulo 1, que sería este de aquí 68 00:05:40,029 --> 00:05:43,930 Y este ángulo de aquí sería el ángulo 1, que sería este de aquí 69 00:05:43,930 --> 00:05:45,829 ¿Vale? Muy bien 70 00:05:45,829 --> 00:05:50,589 Y ahora voy a estudiar estos ángulos que tengo aquí 71 00:05:50,589 --> 00:05:53,230 Entonces, fíjate qué curioso 72 00:05:53,230 --> 00:05:59,589 Y aquí tengo este ángulo y este ángulo de aquí, que los pongo con dos rayitas. 73 00:06:00,009 --> 00:06:04,850 Y este ángulo y este ángulo, como son alternos internos, son también exactamente iguales. 74 00:06:05,189 --> 00:06:07,649 Pero ¿quiénes son estos ángulos? Pues fíjate que los tienes aquí. 75 00:06:10,209 --> 00:06:16,350 Tienes este ángulo de aquí y tienes este ángulo de aquí. 76 00:06:17,550 --> 00:06:20,970 Este de aquí, este de aquí, este de aquí, este de aquí. 77 00:06:21,730 --> 00:06:24,709 Vamos a poner números para que las cosas nos queden un poquito más claras. 78 00:06:25,269 --> 00:06:26,410 Este va a ser el ángulo 1. 79 00:06:27,189 --> 00:06:29,290 Este va a ser el ángulo... 80 00:06:29,290 --> 00:06:31,709 Este sería el 1, 2, 3, el 4. 81 00:06:33,430 --> 00:06:37,529 Entonces este es el 1 y este es el ángulo 4. 82 00:06:37,529 --> 00:06:45,889 Y luego este sería, por ejemplo, siguiendo dando números, sería el 5, el 6, el 7. 83 00:06:46,829 --> 00:06:47,790 Y este sería el 8. 84 00:06:47,790 --> 00:06:51,329 Sería el 5 y el 7 85 00:06:51,329 --> 00:06:52,069 ¿Vale? 86 00:06:52,470 --> 00:06:54,269 Bueno, pero ¿qué es lo que ocurre? 87 00:06:54,350 --> 00:06:55,509 Fíjate qué es lo que ocurre 88 00:06:55,509 --> 00:06:59,129 Estamos estudiando los triángulos morado y verde 89 00:06:59,129 --> 00:07:12,689 Es decir, queremos estudiar B, C, D y B, D, A 90 00:07:12,689 --> 00:07:20,370 Vale, pues fíjate, el lado B, D es común a los dos 91 00:07:20,370 --> 00:07:30,779 Entonces ya tengo un lado que es igual 92 00:07:30,779 --> 00:07:31,279 Fíjate 93 00:07:31,279 --> 00:07:36,420 Vale, el ángulo 1 y el ángulo 4 son iguales, ¿no? 94 00:07:37,459 --> 00:07:47,040 Pues mira, tengo un ángulo que también es igual. 95 00:07:47,399 --> 00:07:50,439 Y ahora pregunto, ¿y este ángulo y este ángulo son iguales? 96 00:07:50,480 --> 00:07:52,600 Pues el 5 y el 7 también son iguales. 97 00:08:00,060 --> 00:08:01,579 Pues fíjate qué fácil lo tengo. 98 00:08:02,339 --> 00:08:04,100 Ángulo, lado, ángulo. 99 00:08:04,560 --> 00:08:12,800 Tengo el lado que es igual y los dos ángulos que forma el lado que es igual también son iguales. 100 00:08:12,800 --> 00:08:18,889 Por tanto, ala, son triángulos congruentes. 101 00:08:27,800 --> 00:08:28,040 Vale. 102 00:08:29,579 --> 00:08:30,259 Siguiente. 103 00:08:32,019 --> 00:08:32,740 Pregunta. 104 00:08:34,059 --> 00:08:35,440 ¿El ángulo 1 quién lo forma? 105 00:08:36,299 --> 00:08:40,259 Pues lo forma el lado BC con la diagonal. 106 00:08:40,259 --> 00:08:43,419 No, el ángulo 1. Vale. 107 00:08:44,220 --> 00:08:48,240 El ángulo que es igual es el 4, que es el lado AD con la diagonal. 108 00:08:48,240 --> 00:08:56,509 Por tanto, AD es igual a BC. 109 00:08:59,419 --> 00:09:05,259 Y análogamente, como este ángulo es igual, lo forma AB con la diagonal. 110 00:09:05,820 --> 00:09:07,679 Y este lo forma DC con la diagonal. 111 00:09:08,159 --> 00:09:14,679 Pues AB es igual a DC. 112 00:09:16,840 --> 00:09:17,679 Conclusión. 113 00:09:17,679 --> 00:09:29,330 Bien, los lados son iguales 2 a 2. 114 00:09:30,889 --> 00:09:33,610 Y es importante concretar esto de 2 a 2. 115 00:09:34,029 --> 00:09:37,330 ¿Qué ocurre en cualquier paralelogramo? 116 00:09:37,850 --> 00:09:44,850 Pues que este lado es igual a este y este lado es igual a este lado de aquí. 117 00:09:44,850 --> 00:09:49,409 los lados que están en las rectas paralelas 118 00:09:49,409 --> 00:09:51,169 que son paralelos dos a dos 119 00:09:51,169 --> 00:09:52,750 son iguales 120 00:09:52,750 --> 00:09:55,610 y fíjate que lo que me ha dicho también esto es 121 00:09:55,610 --> 00:09:59,190 que este triángulo y este triángulo son iguales 122 00:09:59,190 --> 00:10:00,970 que es lo primero que tenía que demostrar 123 00:10:00,970 --> 00:10:02,450 y lo siguiente es 124 00:10:02,450 --> 00:10:05,110 que siendo estos dos triángulos iguales 125 00:10:05,110 --> 00:10:06,830 este lado y este lado son iguales 126 00:10:06,830 --> 00:10:09,710 y este lado y este lado también son iguales 127 00:10:09,710 --> 00:10:12,169 y hasta aquí hemos llegado 128 00:10:12,169 --> 00:10:14,129 muchísimas gracias por tu atención 129 00:10:14,129 --> 00:10:15,350 Hasta luego.