1 00:00:01,970 --> 00:00:22,510 Bueno, la propiedad distributiva dice que si me encuentro con una operación así, esto es un producto, acostumbraros a ver puntitos en vez de X porque deja más limpio las operaciones, para multiplicar, para multiplicar ponemos un puntito en vez de una X. 2 00:00:22,510 --> 00:00:43,649 En la propiedad distributiva os vais a encontrar este tipo de expresiones. Una suma, entre paréntesis, suma, resta, puede haber dos números, tres, cinco, y después fuera del paréntesis está multiplicado por un número. 3 00:00:44,530 --> 00:00:50,469 Puede estar así o lo podéis encontrar al revés, pero se hace de la misma manera. 4 00:00:53,009 --> 00:01:09,230 Bueno, pues la propiedad distributiva dice que esto es igual a el número que está fuera del paréntesis multiplicado por el primero que hay dentro del paréntesis. 5 00:01:09,230 --> 00:01:12,930 ponemos este signo que hay aquí 6 00:01:12,930 --> 00:01:14,950 y volvemos a repetir 7 00:01:14,950 --> 00:01:16,629 el número que hay fuera del paréntesis 8 00:01:16,629 --> 00:01:19,049 y lo multiplicamos por el otro 9 00:01:19,049 --> 00:01:19,989 ¿vale? 10 00:01:23,480 --> 00:01:25,140 o sea, de cualquiera de las 11 00:01:25,140 --> 00:01:27,099 dos expresiones nos quedaría 12 00:01:27,099 --> 00:01:33,760 esto, eso es lo que dice la 13 00:01:33,760 --> 00:01:35,400 propiedad distributiva, otro ejemplo 14 00:01:35,400 --> 00:01:37,739 con una resta, por ejemplo 15 00:01:37,739 --> 00:01:51,799 ¿cómo sería 16 00:01:52,359 --> 00:01:53,200 este Gustavo? 17 00:01:54,000 --> 00:01:54,659 ¿se llama Gustavo? 18 00:01:54,939 --> 00:01:57,319 5 por 4 19 00:01:57,319 --> 00:02:21,490 Sí. Menos 5 por 1. Eso es. Ahora vamos. José Carlos, ¿ves la estructura? Sí. Vale. Entonces, pues nos tiene que dar el mismo resultado si lo hacemos de cualquiera de las dos maneras. 20 00:02:21,490 --> 00:02:35,789 La propiedad es esta y ya nos la sabemos. Escoge y decir lo que hay fuera del paréntesis. Lo multiplico por este y luego por el otro. Y aplico al signo que hay aquí en medio. 21 00:02:35,789 --> 00:02:54,389 Entonces, vamos a este caso de aquí. Lo pongo en color azul. Si resolvemos esto utilizando la prioridad de las operaciones, haríamos primero lo que hay dentro del paréntesis, que es 2 más 4, 6, y luego haríamos 3 por 6, 18. 22 00:02:54,389 --> 00:03:02,889 Así si lo hacemos sin aplicar la propiedad distributiva, tal y como está escrito 23 00:03:02,889 --> 00:03:06,770 Pero si nos encontramos esta expresión 24 00:03:06,770 --> 00:03:12,229 Pues haríamos primero los productos, 3 por 2, 6 25 00:03:12,229 --> 00:03:14,370 3 por 4, 12 26 00:03:14,370 --> 00:03:15,849 Y ahora los sumamos 27 00:03:15,849 --> 00:03:19,389 Y 6 más 12 son 18 28 00:03:19,389 --> 00:03:23,349 ¿Vale? O sea, lo hagamos como lo hagamos, tiene que coincidir 29 00:03:23,349 --> 00:03:36,000 ¿De acuerdo? Este es el concepto de propiedad distributiva 30 00:03:36,000 --> 00:03:40,039 Bueno, ¿y qué es sacar factor común? 31 00:03:40,840 --> 00:03:43,240 Pues sacar factor común es lo contrario 32 00:03:43,240 --> 00:03:46,680 Nos vamos a encontrar una expresión como la que tenéis en la parte derecha 33 00:03:46,680 --> 00:03:50,639 Y vamos a tener que llegar a una como la que está en la parte izquierda 34 00:03:50,639 --> 00:03:56,939 Os pongo un ejemplo con un número más largo 35 00:03:56,939 --> 00:04:01,560 Que si no nos parece que son tonterías 36 00:04:01,560 --> 00:04:24,240 Vamos a usar el número 4. Fijaos, imaginaos esta expresión, 4 por 5, menos 4 por 3, más 2 por 4, más 2 por 4, menos 4 por 1. 37 00:04:27,250 --> 00:04:31,829 ¿Qué veis en esta expresión? Que el 4 está por todas partes. 38 00:04:33,709 --> 00:04:49,029 Se repite en cada uno de los términos, o sea, lo que está separado por sumas y restas, en todos se repite el 4. Bueno, pues sacar factor común significa, ¿cuál es el factor común? El 4. 39 00:04:49,029 --> 00:05:04,129 Bueno, entonces le escribo aparte. Pongo un producto, abro un paréntesis y ahora pongo todo lo demás, que no es el 4, porque el 4 ya lo he escrito aquí fuera y es como un átomos. 40 00:05:04,129 --> 00:05:29,870 Entonces, del primer término pongo el 5. Ahora pongo este menos. Del segundo término pongo el 3, porque el 4 ya lo tengo aquí fuera. Del siguiente, pongo este más. Del siguiente término pongo el 2. Del siguiente término, otro 2. Ahora viene un menos y del último término pongo un 1. 41 00:05:29,870 --> 00:05:34,290 bueno pues esto es 42 00:05:34,290 --> 00:05:35,449 sacar factor común 43 00:05:35,449 --> 00:05:38,250 o sea es encontrar el número 44 00:05:38,250 --> 00:05:40,509 que se repite en todas las operaciones 45 00:05:40,509 --> 00:05:42,670 escribirlo fuera del paréntesis 46 00:05:42,670 --> 00:05:44,329 y expresar todo 47 00:05:44,329 --> 00:05:46,310 lo demás que está aquí 48 00:05:46,310 --> 00:05:48,230 dentro del paréntesis como sumas 49 00:05:48,230 --> 00:05:48,990 o restas 50 00:05:48,990 --> 00:05:51,490 ¿he entendido? 51 00:05:53,980 --> 00:05:56,120 esto es sacar factor común 52 00:05:56,120 --> 00:05:57,939 ¿y si viene 53 00:05:57,939 --> 00:05:59,199 si viene 54 00:05:59,199 --> 00:06:01,959 alguna de medir también? 55 00:06:02,939 --> 00:06:17,000 No. Esto solo es para el producto respecto a sumas y restas. O sea, dentro del paréntesis tienen que estar las sumas y restas. Solo. Y esto tienen que ser productos. 56 00:06:17,000 --> 00:06:24,560 Ya no serían números naturales 57 00:06:24,560 --> 00:06:26,339 ¿Vale? Entonces solamente 58 00:06:26,339 --> 00:06:28,660 vas a encontrarte esto con números naturales 59 00:06:28,660 --> 00:06:30,180 ¿Vale? Porque una división 60 00:06:30,180 --> 00:06:32,079 pasaríamos a fracciones 61 00:06:32,079 --> 00:06:34,319 saldrían fracciones o decimales 62 00:06:34,319 --> 00:06:36,300 y eso ya se hace de otra 63 00:06:36,300 --> 00:06:37,639 manera. Aquí solo te vas a encontrar 64 00:06:37,639 --> 00:06:40,480 con productos y sumas y restos 65 00:06:40,480 --> 00:06:43,839 ¿Vale? ¿Entendido lo que 66 00:06:43,839 --> 00:06:45,319 es sacar factor común? 67 00:06:45,699 --> 00:06:48,139 ¿Y veis que es lo contrario de la distributiva? 68 00:06:48,500 --> 00:06:56,379 ¿Qué pasa si ahora os digo el partitio nuevo? Por ejemplo, imaginaos que no os acordáis de que hemos hecho esto. 69 00:06:58,519 --> 00:07:17,029 A ver si me sale. Y digo, venga, cogemos esto y os digo, aplicar la propiedad distributiva. 70 00:07:17,029 --> 00:07:26,850 ¿Qué era la propiedad distributiva? Coger este y multiplicarle por este, luego por ese, luego por ese. 71 00:07:26,850 --> 00:07:44,170 Pues venga, vamos a aplicar la propiedad distributiva. Sería 4 por 5 menos 20. Pero no lo hacemos, vamos a escribir lo primero. 72 00:07:44,170 --> 00:08:17,899 Venga, y ahora menos. 73 00:08:17,920 --> 00:08:19,800 menos 4 por 1 74 00:08:19,800 --> 00:08:26,389 ¿sí? 75 00:08:26,990 --> 00:08:29,569 pues es que este es el ejercicio 76 00:08:29,569 --> 00:08:30,509 al revés 77 00:08:30,509 --> 00:08:33,850 en ese ejercicio con el que hemos empezado 78 00:08:33,850 --> 00:08:37,129 una cosa es la distributiva 79 00:08:37,129 --> 00:08:39,450 y otra el sacar factor común 80 00:08:39,450 --> 00:08:41,899 ¿bien? 81 00:08:41,899 --> 00:08:43,200 sí, sí 82 00:08:43,200 --> 00:08:53,799 pasamos a asimilar un poco esto 83 00:08:53,799 --> 00:08:55,720 con algún ejercicio 84 00:08:55,720 --> 00:09:02,559 esta ficha 85 00:09:02,559 --> 00:09:13,779 esta ficha 86 00:09:13,779 --> 00:09:19,019 avanzar 87 00:09:19,019 --> 00:09:21,340 venga, os doy esta 88 00:09:21,340 --> 00:09:23,700 esta es la que en el aula virtual 89 00:09:23,700 --> 00:09:24,759 pone ficha 2 90 00:09:24,759 --> 00:09:27,600 y ya sabemos hacer 91 00:09:27,600 --> 00:09:29,759 el 6, el 7 y el 2 92 00:09:29,759 --> 00:09:35,679 entonces vamos a hacer 93 00:09:35,679 --> 00:09:37,919 el 6A, el 7A 94 00:09:37,919 --> 00:09:39,720 y el 8A, aquí 95 00:09:39,720 --> 00:09:44,470 ahora, ¿qué te ha salido el 6A? 96 00:09:45,210 --> 00:09:46,070 el 45 97 00:09:46,070 --> 00:09:48,389 muy bien, porque como no nos 98 00:09:48,389 --> 00:09:50,250 dicen nada, pues prioridad de operaciones 99 00:09:50,250 --> 00:09:52,490 ¿no? hacemos primero lo que está 100 00:09:52,490 --> 00:09:53,470 en el paréntesis 101 00:09:53,470 --> 00:09:54,330 5 por 6 102 00:09:54,330 --> 00:09:56,190 luego 5 por 3 103 00:09:56,190 --> 00:09:57,750 has hecho la distributiva 104 00:09:57,750 --> 00:10:02,610 hay que multiplicar 5 por 6 105 00:10:02,610 --> 00:10:03,929 me ha dado una cosa 106 00:10:03,929 --> 00:10:05,929 luego 5 por 3 por otra cosa 107 00:10:05,929 --> 00:10:06,970 y eso no ha mantenido 108 00:10:06,970 --> 00:10:08,309 has hecho las dos cosas 109 00:10:08,309 --> 00:10:09,750 este como no dice nada 110 00:10:09,750 --> 00:10:12,009 solo calcula 111 00:10:12,009 --> 00:10:15,330 yo habría hecho 6 más 3 112 00:10:15,330 --> 00:10:16,549 porque está entre paréntesis 113 00:10:16,549 --> 00:10:17,450 9 114 00:10:17,450 --> 00:10:20,590 y luego lo habría multiplicado por 5 115 00:10:20,590 --> 00:10:22,830 y me da 45 116 00:10:22,830 --> 00:10:24,730 y tú has hecho 117 00:10:24,730 --> 00:10:27,029 5 por 6 más 118 00:10:27,029 --> 00:10:28,490 5 por 3 119 00:10:28,490 --> 00:10:29,950 ¿no? 120 00:10:30,750 --> 00:10:32,830 30 más 15 121 00:10:32,830 --> 00:10:34,929 y te da 45 122 00:10:34,929 --> 00:10:35,570 muy bien 123 00:10:35,570 --> 00:10:39,029 en el 7 es 124 00:10:39,029 --> 00:10:40,950 obligatorio usar la propiedad 125 00:10:40,950 --> 00:10:41,669 distributiva 126 00:10:41,669 --> 00:10:45,029 en este tienes que hacer sí o sí 127 00:10:45,029 --> 00:10:46,809 lo que tú habías hecho con el 6 128 00:10:46,809 --> 00:10:48,649 ¿y qué has hecho? 129 00:10:48,649 --> 00:10:51,110 he multiplicado 6 por 4 130 00:10:51,110 --> 00:10:51,990 más la 24 131 00:10:51,990 --> 00:10:55,149 6 por 5 que son 30 132 00:10:55,149 --> 00:10:56,730 y eso más 24 más 30 133 00:10:56,730 --> 00:10:57,169 54 134 00:10:57,169 --> 00:10:59,230 a ti también verdad? 135 00:10:59,950 --> 00:11:00,830 24 más 30 136 00:11:00,830 --> 00:11:03,610 si 137 00:11:03,610 --> 00:11:04,029 si 138 00:11:04,029 --> 00:11:11,009 ah que solo habías puesto 6 por 4 139 00:11:11,009 --> 00:11:11,669 no 6 por 5 140 00:11:11,669 --> 00:11:14,710 bueno hay que ir a responder 141 00:11:14,710 --> 00:11:21,250 entonces sería 142 00:11:21,250 --> 00:11:21,850 7 143 00:11:21,850 --> 00:11:24,649 4 entre paréntesis 144 00:11:24,649 --> 00:11:27,330 4 y 5 145 00:11:27,330 --> 00:11:29,090 4 más 146 00:11:29,090 --> 00:11:29,789 5 147 00:11:29,789 --> 00:11:32,169 Eso es 148 00:11:32,169 --> 00:11:34,350 Y se puede dejar así 149 00:11:34,350 --> 00:11:36,730 7 por 4 150 00:11:36,730 --> 00:11:39,049 Más 7 por 5 151 00:11:39,049 --> 00:11:39,649 28 152 00:11:39,649 --> 00:11:44,009 28 más 5 153 00:11:44,009 --> 00:11:48,750 Luego va 7 por 5 154 00:11:48,750 --> 00:11:49,789 Eso es 155 00:11:49,789 --> 00:11:52,210 Ahora 7 por 5 156 00:11:52,210 --> 00:11:53,509 35 157 00:11:53,509 --> 00:11:57,190 Y ahora sumaríamos 28 más 35 158 00:11:57,190 --> 00:11:58,950 Correcto 159 00:11:58,950 --> 00:11:59,210 Vale 160 00:11:59,210 --> 00:12:01,309 Son 50 161 00:12:01,309 --> 00:12:08,320 63 162 00:12:08,320 --> 00:12:09,320 63 163 00:12:09,320 --> 00:12:11,960 Muy bien 164 00:12:11,960 --> 00:12:15,519 Y si lo haces de la forma fácil 165 00:12:15,519 --> 00:12:16,559 Como empezamos 166 00:12:16,559 --> 00:12:18,440 Como los ejercicios de la primera hoja 167 00:12:18,440 --> 00:12:21,240 Con lo de la prioridad de las operaciones 168 00:12:21,240 --> 00:12:23,399 Harías 4 más 5 169 00:12:23,399 --> 00:12:23,960 9 170 00:12:23,960 --> 00:12:26,960 Porque está dentro de un paréntesis y es lo primero que se hace 171 00:12:27,759 --> 00:12:30,899 Y ahora, 7 por 9. 172 00:12:31,720 --> 00:12:34,700 Y 9 por 7, o 7 por 9, 63. 173 00:12:35,299 --> 00:12:36,620 Sí, esto es lo que practicamos mucho. 174 00:12:36,860 --> 00:12:37,259 Eso es. 175 00:12:37,639 --> 00:12:39,019 Pues ya tenéis deberes.