1 00:00:00,000 --> 00:00:03,140 Bueno chicos, ahora vamos a ver el mínimo común múltiplo, ¿vale? 2 00:00:03,220 --> 00:00:10,740 Para eso primero tenemos que factorizar, es decir, descomponer en factores primos los números que nos dan. 3 00:00:11,080 --> 00:00:13,599 Para eso hay que sabernos los números primos, ¿vale? 4 00:00:13,779 --> 00:00:20,940 Que son infinitos, pero los primeros son estos, 2, 3, 5, 7, 11, 13, 17, ¿vale? 5 00:00:21,199 --> 00:00:25,100 Y hay este infinito, pero los que más os van a servir son esos. 6 00:00:25,679 --> 00:00:28,420 Entonces tenemos, por ejemplo, el 40 y el 60. 7 00:00:28,420 --> 00:00:36,420 Hay que averiguar cuál es el múltiplo que sea común a estos dos y el más bajo, ¿vale? 8 00:00:36,479 --> 00:00:37,200 El mínimo común. 9 00:00:37,880 --> 00:00:43,079 Entonces, lo primero es descomponer en factores primos el 40, ¿vale? 10 00:00:43,600 --> 00:00:47,579 ¿Entre qué número primo puedo dividir el 40 y que me dé exacto? 11 00:00:47,619 --> 00:00:48,240 Pues el 2. 12 00:00:48,759 --> 00:00:52,200 40 entre 2 y ponemos aquí lo que nos da, 20. 13 00:00:53,020 --> 00:00:54,979 Continúa entre 2, 10. 14 00:00:55,399 --> 00:00:57,200 Entre 2, 5. 15 00:00:57,200 --> 00:01:05,540 Y ahora 5, como ya es un número primo, lo repito y ya pongo debajo 5 entre 5, 1. 16 00:01:06,000 --> 00:01:06,840 Y ahora 60. 17 00:01:07,780 --> 00:01:09,599 Pues hago lo mismo con el 60, ¿vale? 18 00:01:11,620 --> 00:01:13,939 Entre 2, ya da 30. 19 00:01:14,540 --> 00:01:16,439 Entre 2, 15. 20 00:01:17,480 --> 00:01:21,799 Ahora 15, no puedo dividir entre 2, lo puedo dividir entre 3 o entre 5, ¿vale? 21 00:01:21,799 --> 00:01:28,599 Por ejemplo, entre 3 me da 5, y como 5 ya es primo, pues 5 y 1, ¿vale? 22 00:01:28,719 --> 00:01:41,180 Entonces, una vez tengo esto, voy a borrar esto, ponemos 40 es igual a 2 por 2 por 2 por 5. 23 00:01:41,180 --> 00:02:01,959 Esto es 2 al cubo por 5, ¿vale? Y 60 es 2 por 2, por 3 y por 5, es decir, 2 al cuadrado, y ahora a mí me gusta poner los números iguales debajo, ¿vale? 24 00:02:01,959 --> 00:02:05,799 Entonces, ponemos el 5 debajo del 5 y el 3 suelta. 25 00:02:06,900 --> 00:02:09,740 Y ahora, ¿cómo se calcula el mínimo como múltiplo? 26 00:02:11,000 --> 00:02:12,479 Pues, muy fácil. 27 00:02:12,860 --> 00:02:16,620 Tenemos que coger todos los números, es decir, el 2, el 5 y el 3, 28 00:02:17,419 --> 00:02:20,879 cogiendo el que tenga el mayor exponente. 29 00:02:21,560 --> 00:02:21,759 ¿Vale? 30 00:02:22,400 --> 00:02:25,580 En este caso, el que tiene el mayor exponente, ¿cuál es? 31 00:02:25,900 --> 00:02:26,939 El 2 al cubo, ¿no? 32 00:02:26,939 --> 00:02:36,860 Pues 2 al cubo, los dos 5 tienen exponente 1, entonces cogemos el 5 y el 3 que está suelto, pues el 3. 33 00:02:37,280 --> 00:02:38,939 Y ya multiplicamos esto, ¿vale? 34 00:02:39,620 --> 00:02:44,360 Esto da 8 por 5, 40, por 3, 120. 35 00:02:44,360 --> 00:02:51,080 ¿Vale? Entonces 120 es el mínimo múltiplo de 40 y de 60. 36 00:02:51,460 --> 00:02:55,400 Y ahora vamos a hacer un ejemplo rápido con 15, 20 y 100, ¿vale? 37 00:02:55,400 --> 00:03:03,020 A ver, ahora, para ahorrar tiempo, he avanzado ya la descomposición del 15, el 20 y el 100, ¿vale? 38 00:03:04,039 --> 00:03:11,300 Queda esto, lo he puesto ya aquí, 15 es igual a 3 por 5, 20 igual a 5 por 2 al cuadrado, 39 00:03:11,400 --> 00:03:13,500 y 100 igual a 5 al cuadrado por 2 al cuadrado. 40 00:03:14,000 --> 00:03:16,240 Entonces, hacemos lo mismo que hemos hecho antes, 41 00:03:16,400 --> 00:03:23,659 un múltiplo y cogemos todos los números y los de mayor exponente. 42 00:03:23,659 --> 00:03:25,800 en este caso tenemos el 3 que está suelto 43 00:03:25,800 --> 00:03:27,060 pues lo ponemos, el 3 44 00:03:27,060 --> 00:03:29,620 ahora tenemos un 5 elevado a 2 45 00:03:29,620 --> 00:03:31,840 y dos 5, cogemos el 5 elevado a 2 46 00:03:31,840 --> 00:03:33,520 porque es el que tiene mayor exponente 47 00:03:33,520 --> 00:03:38,120 y cogemos el 2 elevado a 2 48 00:03:38,120 --> 00:03:39,620 porque es el único que hay 49 00:03:39,620 --> 00:03:40,860 2 elevado a 2 50 00:03:40,860 --> 00:03:43,500 y esto si lo resolvemos nos da 51 00:03:43,500 --> 00:03:45,719 4 por 25 da 100 52 00:03:45,719 --> 00:03:47,479 y por 3, 300 53 00:03:47,479 --> 00:03:49,740 y ya estaría hecho el mínimo 54 00:03:49,740 --> 00:03:52,699 como múltiplo de 15, de 20 y de 100