1 00:00:03,180 --> 00:00:10,500 ¡Qué onda! Espero que estén muy bien. 2 00:00:10,900 --> 00:00:15,619 Mi nombre es Daniel Carreón y hoy les voy a platicar de un tema súper increíble, 3 00:00:15,919 --> 00:00:17,320 el volumen de los prismas. 4 00:00:17,559 --> 00:00:21,059 Pero antes de empezar, repasemos algunos conceptos básicos. 5 00:00:21,420 --> 00:00:24,600 El volumen es el espacio que ocupa un cuerpo. 6 00:00:24,600 --> 00:00:29,320 En el sistema internacional, la unidad de volumen es el metro cúbico, 7 00:00:29,660 --> 00:00:33,240 que es equivalente al volumen de un cubo de un metro de lado. 8 00:00:33,240 --> 00:00:40,219 Esto quiere decir que el volumen es la cantidad de unidades cúbicas que caben dentro de un cuerpo geométrico 9 00:00:40,219 --> 00:00:44,759 O cuántos cubos de cierta medida caben dentro de un cuerpo 10 00:00:44,759 --> 00:00:49,520 Ponte atento porque ahora vamos a ver las partes de un prisma 11 00:00:49,520 --> 00:00:56,039 En este caso la base es un cuadrado, por eso este prisma recibe el nombre de prisma cuadrangular 12 00:00:56,039 --> 00:00:59,600 Si la base fuera un triángulo sería prisma triangular 13 00:00:59,600 --> 00:01:03,159 Si fuera un rectángulo sería prisma rectangular 14 00:01:03,159 --> 00:01:07,359 Si tuviera un pentágono de base sería prisma pentagonal 15 00:01:07,359 --> 00:01:10,400 O también podría ser prisma hexagonal 16 00:01:10,400 --> 00:01:16,780 Esto quiere decir que los prismas reciben el nombre según el polígono que tienen como base 17 00:01:16,780 --> 00:01:19,560 Ahora vamos a ver las caras laterales 18 00:01:19,560 --> 00:01:25,379 Las caras laterales de un prisma serán iguales al número de lados que tenga el polígono de la base 19 00:01:25,379 --> 00:01:29,280 Como la base es un cuadrado y el cuadrado tiene cuatro lados 20 00:01:29,280 --> 00:01:32,859 Entonces el prisma tendrá cuatro caras laterales 21 00:01:32,859 --> 00:01:37,459 Pasemos con las aristas 22 00:01:37,459 --> 00:01:41,260 Las aristas son segmentos de recta que unen dos caras 23 00:01:41,260 --> 00:01:43,599 Las pintaré de color azul 24 00:01:43,599 --> 00:01:47,900 En este caso, el prisma cuadrangular tiene doce aristas 25 00:01:47,900 --> 00:01:52,379 Si no me crees, ponle pausa al video y compruébalo tú mismo 26 00:01:52,379 --> 00:01:57,159 También tenemos los vértices, que son los puntos de unión de las aristas 27 00:01:57,159 --> 00:01:58,560 Aquí los tenemos 28 00:01:58,560 --> 00:02:04,819 1, 2, 3, 4, 5, 6, 7 y 8 29 00:02:04,819 --> 00:02:08,479 Este prisma en total tiene 8 vértices 30 00:02:08,479 --> 00:02:11,280 Además tenemos la altura del prisma 31 00:02:11,280 --> 00:02:14,719 Que es la medida de uno de los aristas laterales 32 00:02:14,719 --> 00:02:20,500 Ahora sí, vamos a empezar a calcular el volumen de algunos prismas 33 00:02:20,500 --> 00:02:24,500 Recuerda que el volumen es saber cuántos cubos de cierta medida 34 00:02:24,500 --> 00:02:26,340 Le caben a un cuerpo geométrico 35 00:02:26,340 --> 00:02:30,919 En este caso nosotros trabajaremos con centímetros cúbicos 36 00:02:30,919 --> 00:02:34,419 Aquí tengo un prisma rectangular 37 00:02:34,419 --> 00:02:38,460 Recordemos que recibe ese nombre porque su base es un rectángulo 38 00:02:38,460 --> 00:02:43,719 Las medidas de su base son 7 centímetros por 4 centímetros 39 00:02:43,719 --> 00:02:47,419 Y la altura del cuerpo es de 12 centímetros 40 00:02:47,419 --> 00:02:49,699 Vamos a calcular el volumen 41 00:02:49,699 --> 00:02:54,120 La fórmula para calcular el volumen de cualquier prisma es 42 00:02:54,120 --> 00:02:58,539 Volumen es igual a área de la base por altura del cuerpo 43 00:02:58,539 --> 00:03:01,240 Como nuestra base es un rectángulo 44 00:03:01,240 --> 00:03:05,099 Tenemos que calcular la área con la fórmula del rectángulo 45 00:03:05,099 --> 00:03:06,819 Y es lado por lado 46 00:03:06,819 --> 00:03:11,840 Entonces me queda que área de la base es igual a 7 por 4 47 00:03:11,840 --> 00:03:15,740 Por lo tanto tengo que área de la base es igual a 7 por 4 48 00:03:15,740 --> 00:03:20,639 Y 7 por 4 me da como resultado 28 centímetros cuadrados 49 00:03:20,639 --> 00:03:23,319 Ahora seguimos con la fórmula del volumen 50 00:03:23,319 --> 00:03:27,439 Y recordemos que la fórmula era área de la base por altura del cuerpo. 51 00:03:27,840 --> 00:03:33,680 En este caso, el área de la base es 28 centímetros y la altura del cuerpo es 12. 52 00:03:34,180 --> 00:03:41,000 Al multiplicar 28 por 12, me da como resultado 336 centímetros cúbicos. 53 00:03:41,680 --> 00:03:48,460 Esto quiere decir que al prisma rectangular le caben 336 cubitos de un centímetro por lado. 54 00:03:49,319 --> 00:03:50,400 ¡Facilísimo, ¿verdad? 55 00:03:51,120 --> 00:03:52,860 Ahora vamos a ver otro ejemplo. 56 00:03:52,860 --> 00:03:58,699 Aquí tengo un prisma triangular, se llama así porque su base es un triángulo 57 00:03:58,699 --> 00:04:05,139 Sus medidas de la base son 5 centímetros y 4 centímetros de altura del triángulo 58 00:04:05,139 --> 00:04:08,939 Y la altura del cuerpo es de 15 centímetros 59 00:04:08,939 --> 00:04:13,199 La fórmula para calcular el volumen de cualquier prisma es 60 00:04:13,199 --> 00:04:17,560 Volumen es igual a área de la base por altura del cuerpo 61 00:04:17,560 --> 00:04:20,459 Primero calcularemos el área de la base 62 00:04:20,459 --> 00:04:24,379 Y la fórmula para calcular el área de un triángulo es 63 00:04:24,379 --> 00:04:26,360 Base por altura sobre 2 64 00:04:26,360 --> 00:04:28,620 Ahora voy a sustituir datos 65 00:04:28,620 --> 00:04:33,040 Y tengo que área de la base es 5 por 4 entre 2 66 00:04:33,040 --> 00:04:37,019 Al realizar las operaciones me queda que área de la base es igual 67 00:04:37,019 --> 00:04:39,379 Y 5 por 4 es igual a 20 68 00:04:39,379 --> 00:04:42,800 Entre 2 es igual a 10 centímetros cuadrados 69 00:04:42,800 --> 00:04:46,740 Ahora voy a calcular el volumen del prisma triangular 70 00:04:46,740 --> 00:04:54,199 recordemos que la fórmula es volumen es igual a área de la base por altura del cuerpo de área de 71 00:04:54,199 --> 00:05:01,980 la base son 10 centímetros cuadrados y de altura del cuerpo son 15 al multiplicar 10 por 15 me da 72 00:05:01,980 --> 00:05:10,660 que el resultado es de 150 centímetros cúbicos facilísimo verdad ahora vamos a calcular el 73 00:05:10,660 --> 00:05:16,199 volumen de un prisma pentagonal recuerda que recibe así su nombre porque su base es un 74 00:05:16,199 --> 00:05:22,839 un pentágono y sus medidas son las siguientes, de cada uno de sus lados mide 5 centímetros, 75 00:05:23,339 --> 00:05:30,920 su apotema mide 4.3 centímetros y la altura del cuerpo es de 10 centímetros, para calcular 76 00:05:30,920 --> 00:05:36,519 el volumen de cualquier prisma se utiliza la fórmula área de la base por altura del 77 00:05:36,519 --> 00:05:42,980 cuerpo, para calcular el área de la base de cualquier pentágono su fórmula es perímetro 78 00:05:42,980 --> 00:05:50,180 por apotema sobre 2, ahora voy a sustituir datos y queda que área de la base es igual y tengo que 79 00:05:50,180 --> 00:05:56,899 calcular el perímetro del pentágono, el perímetro es la suma de todos los lados de un polígono y 80 00:05:56,899 --> 00:06:03,459 como el pentágono tiene 5 lados y cada uno de sus lados mide 5 centímetros, 5 por 5 me da como 81 00:06:03,459 --> 00:06:10,980 resultado 25 y ese es el perímetro del pentágono, ahora lo voy a multiplicar por el apotema que es 82 00:06:10,980 --> 00:06:20,220 4.3 y lo voy a dividir entre 2, al multiplicar 25 por 4.3 sobre 2 tengo que área de la base es igual 83 00:06:20,220 --> 00:06:28,319 a 53.7 centímetros cuadrados, ahora voy a calcular el volumen, recuerdo que la fórmula del volumen es 84 00:06:28,319 --> 00:06:36,300 área de la base por altura del cuerpo y como área de la base tenemos 53.7 centímetros cuadrados y de 85 00:06:36,300 --> 00:06:46,519 altura del cuerpo 10 centímetros, al multiplicar 53.7 por 10 tengo como resultado 537 centímetros 86 00:06:46,519 --> 00:06:54,180 cúbicos, esto quiere decir que a este prisma pentagonal le caben 537 cubitos de un centímetro 87 00:06:54,180 --> 00:07:03,000 por lado, regalado ¿verdad? Ahora vamos a ver el último ejemplo, aquí tenemos un cubo que mide 6 88 00:07:03,000 --> 00:07:09,300 centímetros por lado, para calcular el volumen de cualquier prisma es área de la base por altura 89 00:07:09,300 --> 00:07:15,480 del cuerpo, en este caso como su base es un cuadrado la fórmula es área de la base es igual 90 00:07:15,480 --> 00:07:22,459 a lado por lado, al sustituir datos me queda que área de la base es igual a 6 por 6 y al multiplicar 91 00:07:22,459 --> 00:07:29,740 6 por 6 tengo que área de la base es igual a 36 centímetros cuadrados, como quiero calcular el 92 00:07:29,740 --> 00:07:35,420 volumen voy a utilizar su fórmula, volumen es igual a área de la base por altura del 93 00:07:35,420 --> 00:07:41,879 cuerpo, como área de la base tenemos 36 centímetros cuadrados por la altura del cuerpo que son 94 00:07:41,879 --> 00:07:49,319 6 centímetros, al multiplicar 36 por 6 tengo que el volumen es igual a 216 centímetros 95 00:07:49,319 --> 00:07:56,420 cúbicos, esto quiere decir que a este cubo le caben 216 cubitos de un centímetro por 96 00:07:56,420 --> 00:08:02,959 lado. Facilísimo, ¿verdad? Cuando reviso sus comentarios siempre me piden que les deje ejercicios 97 00:08:02,959 --> 00:08:09,100 para que puedan ejercitar el tema visto, por lo tanto aquí les dejo estos prismas, calculen el 98 00:08:09,100 --> 00:08:20,819 volumen y dejen su respuesta en los comentarios, ¿podrán resolverlos? Espero que este tema te haya 99 00:08:20,819 --> 00:08:27,579 gustado, por favor regálame un like, suscríbete y dale click a la campanita para que puedas seguir 100 00:08:27,579 --> 00:08:32,399 viendo mis videos. No olvides seguirme en mis redes sociales. Espero tus comentarios. 101 00:08:32,919 --> 00:08:35,179 Nos vemos la próxima. ¡Hasta luego!