1 00:00:00,880 --> 00:00:05,919 Buenos días. En el día de hoy vamos a explicar el concepto de función. 2 00:00:06,080 --> 00:00:11,140 Las funciones son súper importantes, tanto en primero de bachillerato como en segundo de bachillerato. 3 00:00:11,279 --> 00:00:17,820 Entonces está bien que en cuarto de la ESO entendamos el porqué de las funciones. 4 00:00:18,980 --> 00:00:21,739 Señalo y os leo esta definición. 5 00:00:22,739 --> 00:00:27,519 Una función es un objeto matemático que se utiliza para expresar la dependencia entre dos magnitudes. 6 00:00:27,519 --> 00:00:37,820 Eso es cierto. Esta definición, ¿qué es lo que nos quiere decir? Que una función lo que hace es relacionar dos cosas de la vida real, dos magnitudes de la vida real. 7 00:00:38,359 --> 00:00:48,149 Por ejemplo, el tiempo y la velocidad. Y se provoca una relación entre dichas magnitudes. Una relación, una relación generalmente de dependencia. 8 00:00:48,149 --> 00:00:54,829 dependencia. Otra definición la vemos aquí. Las funciones son como máquinas a las que 9 00:00:54,829 --> 00:01:01,490 se introduce un elemento x y se devuelve otro valor y, que también se designa por f de 10 00:01:01,490 --> 00:01:09,469 x. Lo vemos aquí. Tenemos unos valores de entrada. Esos valores de entrada son procesados 11 00:01:09,469 --> 00:01:23,370 por la máquina, esa máquina virtual, y generamos unos valores de salida. Sigo leyendo. Una 12 00:01:23,370 --> 00:01:27,689 función es una relación o correspondencia entre dos magnitudes, dos conceptos, dos cosas 13 00:01:27,689 --> 00:01:31,469 de la vida real, de manera que a cada valor de la primera le corresponde un único valor 14 00:01:31,469 --> 00:01:38,510 de la segunda. Entonces, lo que tenemos es una relación entre dos variables, entre dos 15 00:01:38,510 --> 00:01:42,930 magnitudes. La variable independiente x, a la cual yo le puedo atribuir los valores que 16 00:01:42,930 --> 00:01:49,170 nosotros deseemos, señalo aquí la variable x, esta sería la variable independiente, 17 00:01:49,170 --> 00:01:55,930 a la cual yo arbitrariamente le voy dando los valores, y otra variable llamada f de x o función, 18 00:01:56,510 --> 00:02:01,370 a la cual también podríamos llamar variable y, que sería la variable dependiente. 19 00:02:01,489 --> 00:02:06,209 ¿De quién depende el valor de y? Lógicamente depende del valor de entrada, que es el valor de x. 20 00:02:06,650 --> 00:02:08,289 Es una relación de dependencia. 21 00:02:09,509 --> 00:02:14,610 En cuanto al concepto de función que nos ha señalado al principio de una relación entre dos magnitudes, 22 00:02:14,610 --> 00:02:35,750 Yo siempre señalo el siguiente ejemplo. El hecho de comer los donuts. ¿Cuántos donuts puedo comer yo? Pues todos los que quiera. Un donut, dos donuts, tres donuts, cuatro donuts. Y frente a esa acción de comer donuts, variable independiente x, tendríamos el hecho de engordar kilos. 23 00:02:35,750 --> 00:02:41,189 Claro, ¿de quién depende el hecho de que yo engorde kilos? De los donuts que yo me coma. 24 00:02:41,270 --> 00:02:48,030 Ese sería un claro ejemplo de relación entre dos magnitudes, el hecho de comer donuts y los kilos que engordo. 25 00:02:48,729 --> 00:02:53,530 Espero que os haya gustado el concepto de función. Un saludo.