1 00:00:00,000 --> 00:00:06,480 Hola a todos y bienvenidos a este nuevo vídeo sobre fuerzas y equilibrio. 2 00:00:06,920 --> 00:00:13,680 Vamos a empezar por el concepto de equilibrio. Un cuerpo sometido a la 3 00:00:13,680 --> 00:00:19,120 acción de varias fuerzas, como es el caso de la foto, está en equilibrio si la suma 4 00:00:19,120 --> 00:00:24,040 de todas las fuerzas aplicadas sobre él es cero. Vamos a verlo en sistemas un 5 00:00:24,040 --> 00:00:28,240 poquito más fáciles para dibujar las fuerzas. 6 00:00:30,000 --> 00:00:34,720 Os recuerdo esta simulación que hemos visto en clase, en la que tenemos la 7 00:00:34,720 --> 00:00:39,440 posibilidad de colocar diferentes personas con diferente fuerza 8 00:00:39,440 --> 00:00:46,440 a dos lados de esta carretilla. Si colocamos las fuerzas equilibradas vemos 9 00:00:46,440 --> 00:00:50,760 que la fuerza hacia la derecha es igual a la fuerza hacia la izquierda y 10 00:00:50,760 --> 00:00:55,680 recordáis que la carretilla no se movía, está en equilibrio. Si colocamos aquí un 11 00:00:55,680 --> 00:01:02,400 hombrecito más y la fuerza es mayor hacia la derecha se desplazará a la 12 00:01:02,400 --> 00:01:07,080 derecha. Si la fuerza es mayor hacia la izquierda se desplazará hacia la 13 00:01:07,080 --> 00:01:12,040 izquierda. Sólo está en equilibrio cuando las fuerzas hacia la izquierda y hacia 14 00:01:12,040 --> 00:01:17,880 la derecha se compensan y la suma que llamamos resultante es cero. Vamos a 15 00:01:17,880 --> 00:01:24,200 verlo en otros sistemas. Aquí tenemos una planta colocada encima 16 00:01:24,200 --> 00:01:30,280 de una mesa. Sabemos que este cuerpo tiene un peso de 10 newton, en este caso 17 00:01:30,280 --> 00:01:37,120 nos están diciendo. Si no existe ninguna otra fuerza más que el peso 18 00:01:37,120 --> 00:01:41,640 este cuerpo no debería estar en equilibrio, debería hundirse. Como eso no 19 00:01:41,640 --> 00:01:47,640 ocurre lo podemos explicar con otra fuerza que aparece 20 00:01:47,640 --> 00:01:56,360 que se llama normal. La fuerza normal es una fuerza perpendicular a la superficie 21 00:01:56,360 --> 00:02:02,560 y que tiene que igualar el peso para que el sistema esté en equilibrio. En este 22 00:02:02,560 --> 00:02:08,240 caso la normal son 10 newton porque el peso son 10 newton. Lo máximo que podrá 23 00:02:08,240 --> 00:02:15,360 ser la normal depende de la resistencia de esta superficie. Por ejemplo si ponemos 24 00:02:15,480 --> 00:02:22,280 aquí encima un elefante pues no podrá igualar la normal el peso y se romperá. 25 00:02:24,640 --> 00:02:29,040 La normal por definición es la fuerza que ejerce una superficie sobre los 26 00:02:29,040 --> 00:02:34,200 cuerpos que están apoyados sobre ella. Es perpendicular a la superficie, igual y de 27 00:02:34,200 --> 00:02:39,840 sentido contrario al peso, excepto que el peso sea muy grande y se rompa. Vamos a un 28 00:02:39,840 --> 00:02:44,640 segundo ejemplo. Aquí tenemos una chica haciendo pointing y qué fuerzas actúan 29 00:02:44,640 --> 00:02:48,440 sobre esta chica. Cuando está aquí colgada la pobre está en equilibrio. 30 00:02:48,440 --> 00:02:55,040 Luego la suma de fuerzas aplicadas sobre ella debe ser cero. La fuerza más 31 00:02:55,040 --> 00:03:01,880 evidente es el peso. Imaginemos que tiene un peso de 500 newton. Si sólo está 32 00:03:01,880 --> 00:03:06,800 esta fuerza no estaría en equilibrio. Necesitamos otra fuerza que haga que el 33 00:03:06,800 --> 00:03:11,640 sistema esté en equilibrio y que anule esta. ¿Qué fuerza es esa? 34 00:03:14,640 --> 00:03:21,840 Esa fuerza es la tensión. La tensión es una fuerza que aparece cuando tenemos un 35 00:03:21,840 --> 00:03:30,320 cuerpo colgado de un cable o una cuerda o estamos tirando con una fuerza de un 36 00:03:30,320 --> 00:03:34,640 cable o una cuerda. Ahí tenéis la definición. 37 00:03:34,920 --> 00:03:39,280 Cuando el peso o fuerza que cuelga es mayor que la tensión que puede soportar 38 00:03:39,280 --> 00:03:43,960 lo que ocurre es que se rompe. 39 00:03:44,880 --> 00:03:51,440 Vamos con un último ejemplo y en este caso no está en equilibrio. Veis que se 40 00:03:51,440 --> 00:03:55,280 está moviendo. Además puede tener una aceleración. No está en equilibrio. ¿Qué 41 00:03:55,280 --> 00:04:00,960 fuerzas actúan sobre él? Como no está en equilibrio la suma no será cero. Actúa 42 00:04:00,960 --> 00:04:06,160 la fuerza que está haciendo este señor a base de su esfuerzo para mover la 43 00:04:06,160 --> 00:04:11,200 bicicleta y actúa una segunda fuerza que es la fuerza de rozamiento que impide 44 00:04:11,200 --> 00:04:18,840 que se mueva más deprisa. Pero la suma de las fuerzas no es cero 45 00:04:20,200 --> 00:04:26,080 sino la resultante R. Por eso este cuerpo no está en equilibrio. Bueno espero que 46 00:04:26,080 --> 00:04:31,280 os haya resultado útil y os sirva para repasar para vuestros próximos controles. 47 00:04:31,280 --> 00:04:36,600 Muchas gracias por verlo hasta aquí y hasta el próximo.