ANSWERS THE MOVING MAN 2

QUESTION 1

a) In the first 5 seconds, the moving man displacement is $\Delta x=5 \mathrm{~s} \times 2 \mathrm{~m} / \mathrm{s}=$ 10 m
Therefore, his new position is $\mathrm{X}_{\mathrm{f}}=-12+10=-2 \mathrm{~m}$
He stops for 2 seconds, so when $t=7 \mathrm{~s}$, his position is still $x=-2 \mathrm{~m}$ When he moves again, his displacement is $\Delta x=3 \mathrm{~s} \times(-3) \mathrm{m} / \mathrm{s}=-9 \mathrm{~m}$ His final position, after 10 s , is $-2+(-9)=-11 \mathrm{~m}$
b)

QUESTION 2

a) We calculate acceleration as:

$$
a=\frac{v_{f}-v_{i}}{\Delta t}=\frac{9 \mathrm{~m} / \mathrm{s}-4 \mathrm{~m} / \mathrm{s}}{10 \mathrm{~s}}=0,5 \mathrm{~m} / \mathrm{s}^{2}
$$

b) In this case, $\mathrm{v}_{\mathrm{f}}=0 \mathrm{~m} / \mathrm{s}$ and $\mathrm{v}_{\mathrm{i}}=9 \mathrm{~m} / \mathrm{s}$, thus:

$$
\Delta t=\frac{v_{f}-v_{i}}{a}=\frac{0 \mathrm{~m} / \mathrm{s}-(-9) \mathrm{m} / \mathrm{s}}{-3 \mathrm{~m} / \mathrm{s}^{2}}=3 \mathrm{~s}
$$

c)

