Límites de funciones.

M. Carmen Hurtado

Departamento de matemáticas. IES Ángel Corella. (Colmenar Viejo)

12 de mayo de 2020

I.E.S. Ángel Corella	C
0	Departamento de Matemáticas

índice de contenidos l

- Límite de una función en un punto
 - Límite lateral por la izquierda
 - Límite lateral por la derecha
 - Límite en un punto

- 2 Límite de una función en el infinito
 - Límite de una función en + infinito.
 - Límite de una función en infinito.

Límite de f(x) cuando $x \to c^-$

Límite por la izquierda en un punto

Límite de f(x) cuando $x \to c^-$

Límite por la izquierda en un punto

• $\lim_{x \to c^-} f(x)$ Se lee límite de f(x) cuando x tiende a c por la izquierda $x \to c^-$ significa que x toma valores cada vez más próximos a c, siendo menores que c

Límite de f(x) cuando $x \to c^-$

Límite por la izquierda en un punto

Límite de f(x) cuando $x \to c^-$

Límite por la izquierda en un punto

$$\bullet \lim_{x \to c^-} f(x) = +\infty$$

Significa que cuando $x \to c^-$ f(x) toma valores cada vez mayores. La función tiene una asíntota vertical de ecuación x=c.

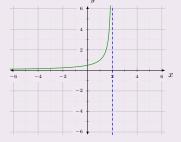


Figura 1: $\lim_{x \to c^{-}} f(x) = +\infty$

Límite de f(x) cuando $x \to c^-$

Límite por la izquierda en un punto

Límite de f(x) cuando $x \to c^{-}$

Límite por la izquierda en un punto

$$\bullet \lim_{x \to c^-} f(x) = -\infty$$

Significa que cuando $x\to c^-$ f(x) toma valores cada vez menores. La función tiene una asíntota vertical de ecuación x=c.

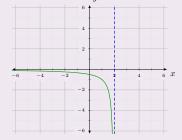


Figura 2: $\lim_{x \to c^{-}} f(x) = -\infty$

Límite de f(x) cuando $x \to c^-$

Límite por la izquierda en un punto

Límite de f(x) cuando $x \to c^-$

Límite por la izquierda en un punto

$$\bullet \lim_{x \to c^{-}} f(x) = L$$

Significa que cuando $x \to c^-$ f(x) toma valores cada vez más próximos a L.

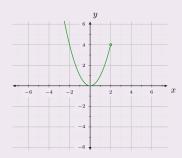


Figura 3: $\lim_{x \to c^{-}} f(x) = L$

Límite de f(x) cuando $x \to c^+$

Límite por la derecha en un punto

Límite de f(x) cuando $x \to c^+$

Límite por la derecha en un punto

• $\lim_{x \to c^+} f(x)$ Se lee límite de f(x) cuando x tiende a c por la derecha $x \to c^+$ significa que x toma valores cada vez más próximos a c, siendo mayores que c

Límite de f(x) cuando $x \to c^+$

Límite por la derecha en un punto

Límite de f(x) cuando $x \to c^+$

Límite por la derecha en un punto

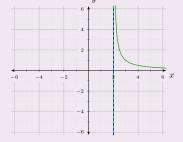


Figura 4: $\lim_{x \to c^+} f(x) = +\infty$

Límite de f(x) cuando $x \to c^+$

Límite por la derecha en un punto

Límite de f(x) cuando $x \to c^+$

Límite por la derecha en un punto

 $\bullet \lim_{x \to c^+} f(x) = -\infty$

Significa que cuando $x\to c^+$ f(x) toma valores cada vez menores. La función tiene una asíntota vertical de ecuación x=c.

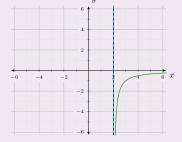


Figura 5: $\lim_{x \to c^+} f(x) = -\infty$

Límite de f(x) cuando $x \to c^+$

Límite por la derecha en un punto

Límite de f(x) cuando $x \to c^+$

Límite por la derecha en un punto

$$\bullet \lim_{x \to c^+} f(x) = L$$

Significa que cuando $x \to c^+$ f(x) toma valores cada vez más próximos a L.

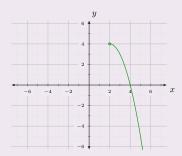


Figura 6: $\lim_{x \to c^+} f(x) = L$

Límite de f(x) cuando $x \to +\infty$

Límite cuando x tiende a más infinito

Límite de f(x) cuando $x \to +\infty$

Límite cuando x tiende a más infinito

 $\bullet \lim_{x \to +\infty} f(x)$

Se lee límite de f(x) cuando x tiende a más infinito.

 $x \to +\infty$ significa que x toma valores cada vez mayores.

Límite de f(x) cuando $x \to +\infty$

$$\lim_{x \to +\infty} f(x) = +\infty$$

Límite de f(x) cuando $x \to +\infty$

$$\lim_{x \to +\infty} f(x) = +\infty$$

• $\lim_{x\to +\infty} f(x) = +\infty$ Significa que cuando $x\to +\infty$, f(x) toma valores cada vez mayores.

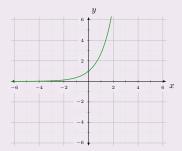


Figura 7: $\lim_{x \to +\infty} f(x) = +\infty$

Límite de f(x) cuando $x \to -\infty$

$$\lim_{x \to +\infty} f(x) = -\infty$$

Límite de f(x) cuando $x \to -\infty$

$$\lim_{x \to +\infty} f(x) = -\infty$$

• $\lim_{x\to +\infty} f(x) = -\infty$ Significa que cuando $x\to +\infty$, f(x) toma valores cada vez menores.

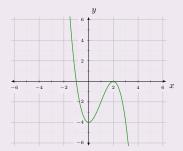


Figura 8: $\lim_{x \to +\infty} f(x) = -\infty$

Límite de f(x) cuando $x \to +\infty$

$$\lim_{x \to +\infty} f(x) = L$$

Límite de f(x) cuando $x \to +\infty$

$$\lim_{x \to +\infty} f(x) = L$$

 $\bullet \lim_{x \to +\infty} f(x) = L$

Significa que cuando $x \to +\infty$, f(x) toma valores cada vez más próximos a L.

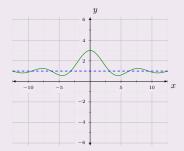


Figura 9: $\lim_{x \to +\infty} f(x) = L$

Límite de f(x) cuando $x \to +\infty$

Límite de f(x) cuando $x \to +\infty$

$$\exists \lim_{x \to +\infty} f(x)$$

 $\bullet \not\equiv \lim_{x \to +\infty} f(x)$

Significa que cuando $x \to +\infty$, f(x) no converge a ningún valor.

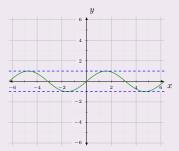


Figura 10: $\nexists \lim_{x \to +\infty} f(x)$

Límite de f(x) cuando $x \to -\infty$

Límite cuando x tiende a menos infinito

Límite de f(x) cuando $x \to -\infty$

Límite cuando x tiende a menos infinito

 $\bullet \lim_{x \to -\infty} f(x)$

Se lee límite de f(x) cuando x tiende a menos infinito.

 $x \to -\infty$ significa que x toma valores cada vez menores.

Límite de f(x) cuando $x \to -\infty$

$$\lim_{x \to -\infty} f(x) = +\infty$$

Límite de f(x) cuando $x \to -\infty$

$$\lim_{x \to -\infty} f(x) = +\infty$$

 $\bullet \lim_{x \to -\infty} f(x) = +\infty$

Significa que cuando $x \to -\infty$, f(x) toma valores cada vez mayores.

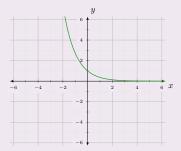


Figura 11: $\lim_{x \to -\infty} f(x) = +\infty$

Límite de f(x) cuando $x \to -\infty$

$$\lim_{x \to -\infty} f(x) = -\infty$$

Límite de f(x) cuando $x \to -\infty$

$$\lim_{x \to -\infty} f(x) = -\infty$$

 $\bullet \lim_{x \to -\infty} f(x) = -\infty$

Significa que cuando $x \to -\infty$, f(x) toma valores cada vez menores.

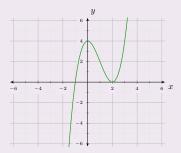


Figura 12: $\lim_{x \to -\infty} f(x) = -\infty$

Límite de f(x) cuando $x \to -\infty$

$$\lim_{x \to -\infty} f(x) = L$$

Límite de f(x) cuando $x \to -\infty$

$$\lim_{x \to -\infty} f(x) = L$$

 $\bullet \lim_{x \to -\infty} f(x) = L$

Significa que cuando $x \to -\infty$, f(x) toma valores cada vez más próximos a L.

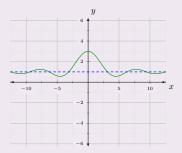


Figura 13: $\lim_{x \to -\infty} f(x) = L$

Límite de f(x) cuando $x \to -\infty$

$$\exists \lim_{x \to -\infty} f(x)$$

Límite de f(x) cuando $x \to -\infty$

$$\nexists \lim_{x \to -\infty} f(x)$$

 $\bullet \not\equiv \lim_{x \to -\infty} f(x)$

Significa que cuando $x \to -\infty$, f(x) no converge a ningún valor.

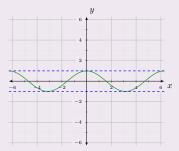


Figura 14: $\nexists \lim_{x \to -\infty} f(x)$