ANSWERS TO PROBLEMS 11, 12, 14

11. A rightward force is applied to a $6-\mathrm{kg}$ object to move it across a rough surface at constant velocity. The object encounters 15 N of frictional force. Use the diagram to determine the gravitational force, normal force, net force, and applied force. (Neglect air resistance.)

$\mathrm{m}=6 \mathrm{~kg}$
$\mathrm{a}=0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
$F_{\text {net }}=$

$$
\begin{aligned}
& F_{\text {grav }}=\mathrm{m} \cdot \mathrm{~g}=6 \mathrm{~kg} \cdot 9,8 \mathrm{~N} / \mathrm{kg}=58,8 \mathrm{~N} \\
& \mathrm{~F}_{\text {norm }}=F_{\text {grav }}=58,8 \mathrm{~N} \\
& \mathrm{~F}_{\text {net }}=\mathrm{m} \cdot \mathrm{a}=0\left(\text { because } \mathrm{a}=0 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& \mathrm{F}_{\text {net }}=F_{\text {app }}-F_{\text {frict }} \rightarrow F_{\text {app }}=F_{\text {frict }}=15 \mathrm{~N}
\end{aligned}
$$

12. A rightward force is applied to a $10-\mathrm{kg}$ object to move it across a rough surface at constant velocity. The coefficient of friction between the object and the surface is 0.2 . Use the diagram to determine the gravitational force, normal force, applied force, frictional force, and net force. (Neglect air resistance.)

$$
\begin{aligned}
& F_{\text {grav }}=m \cdot g=10 \mathrm{~kg} \cdot 9,8 \mathrm{~N} / \mathrm{kg}=98 \mathrm{~N} \\
& F_{\text {norm }}=F_{\text {grav }}=98 \mathrm{~N} \\
& F_{\text {frict }}=\mu \cdot F_{\text {norm }}=0,2 \cdot 98=19,6 \mathrm{~N} \\
& F_{\text {net }}=\mathrm{m} \cdot \mathrm{a}=0\left(\text { because } \mathrm{a}=0 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& F_{\text {net }}=F_{\text {app }}-F_{\text {frict }} \rightarrow F_{\text {app }}=F_{\text {frict }}=19,6 \mathrm{~N}
\end{aligned}
$$

14. A rightward force of 25 N is applied to a $4-\mathrm{kg}$ object to move it across a rough surface with a rightward acceleration of $2.5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. Use the diagram to determine the gravitational force, normal force, frictional force, net force, and the coefficient of friction between the object and the surface. (Neglect air resistance.)

$$
\begin{aligned}
& F_{\text {grav }}=\mathrm{m} \cdot \mathrm{~g}=4 \mathrm{~kg} \cdot 9,8 \mathrm{~N} / \mathrm{kg}=39,2 \mathrm{~N} \\
& \mathrm{~F}_{\text {norm }}=F_{\text {grav }}=39,2 \mathrm{~N} \\
& \mathrm{~F}_{\text {net }}=\mathrm{m} \cdot \mathrm{a}=4 \mathrm{~kg} \cdot 2,5 \mathrm{~m} / \mathrm{s}^{2}=10 \mathrm{~N} \\
& \mathrm{~F}_{\text {net }}=\mathrm{F}_{\text {app }}-F_{\text {frict }} \rightarrow F_{\text {frict }}=F_{\text {app }}-F_{\text {net }}=25-10=15 \mathrm{~N} \\
& F_{\text {frict }}=\mu \cdot F_{\text {norm }} \rightarrow \mu=F_{\text {frict }} / F_{\text {norm }}=15 / 39,2=0,38
\end{aligned}
$$

