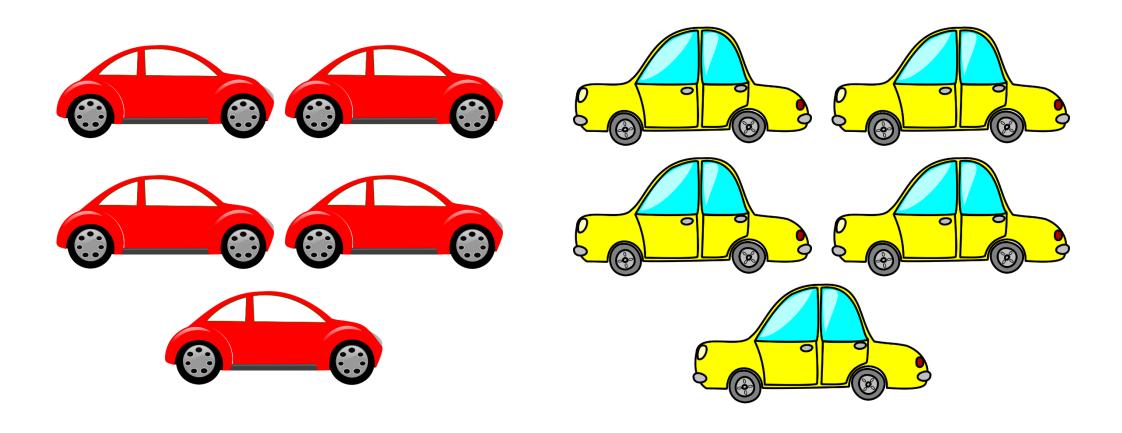
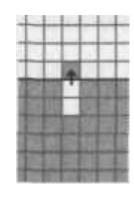


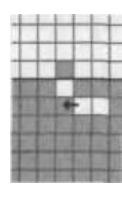
The Curious Game of the Book in the Class-Time

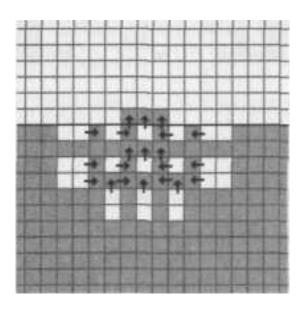
- You're going to see some pictures.
- Write about their importance in the book (what the writer says about then, why/when do they appear, their meaning...).
- Explain it in 4-5 lines. Remember, try to make references to the story and give details if posible!!

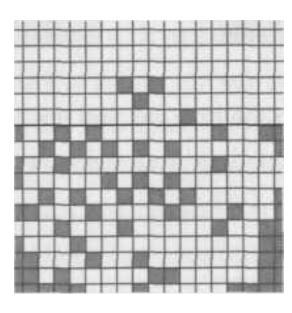
Hint: Prime numbers

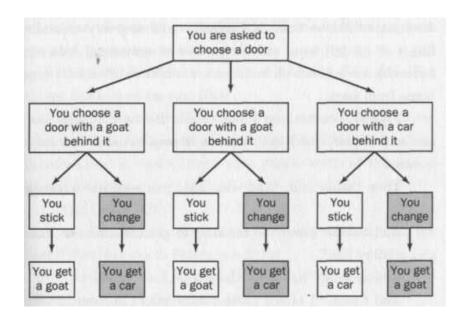

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	etc.


	2	3	5	7		
11		13		17	19	
		23			29	
31				37		
41		43		47		etc.








Let the doors be called X. Y and Z.

Let Cx be the event that the car is behind door X and so on.

Let Hx be the event that the host opens door X and so on.

Supposing that you choose door X, the possibility that you win a car if you then switch your choice is given by the following formula

$$P(Hz \land Cy) + P(Hy \land Cz)$$

= $P(Cy) \cdot P(Hz : Cy) + P(Cz) \cdot P(Hy : Cz)$
= $(1/3 \cdot 1) + (1/3 \cdot 1) = 2/3$

Auristopher Swinden

Appendix

Question

Prove the following result:

A triangle with sides that can be written in the form $n^2 + 1$, $n^2 - 1$ and 2n (where n > 1) is right-angled.

Show, by means of a counterexample, that the converse is false.

Answer

First we must determine which is the longest side of a triangle with sides that can be written in the form $n^2 + 1$, $n^2 - 1$ and 2n (where n > 1)

$$n^2 + 1 - 2n = (n - 1)^2$$

and if $n > 1$ then $(n - 1)^2 > 0$
therefore $n^2 + 1 - 2n > 0$
therefore $n^2 + 1 > 2n$
Similarly $(n^2 + 1) - (n^2 - 1) = 2$
therefore $n^2 + 1 > n^2 - 1$

This means that $n^2 + 1$ is the longest side of a triangle with sides that can be written in the form $n^2 + 1$, $n^2 - 1$ and 2n (where n > 1).

Think about it...

What is life like for people like Christopher?

REFERENCES

Images extracted from the book "The Curious Incident of the Dog in the Night-Time", by Mark Haddon

Images from slides 5 and 6 extracted from:

www.pixabay.com

Wikimedia Commons