EarthViewer A Free App for iPad and Android

Explore changes in the atmosphere, climate, biosphere, and lithosphere over billions of years!

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

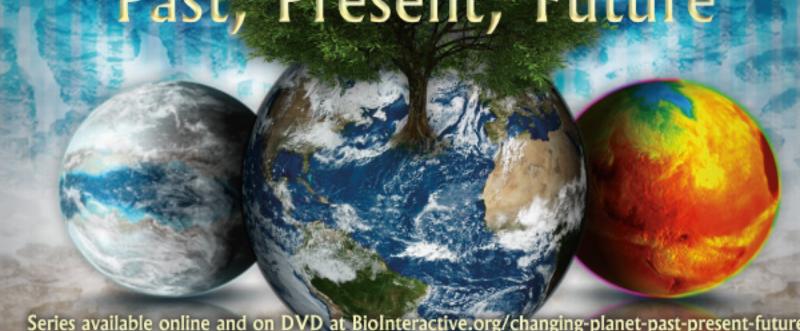
3000

3200

3400

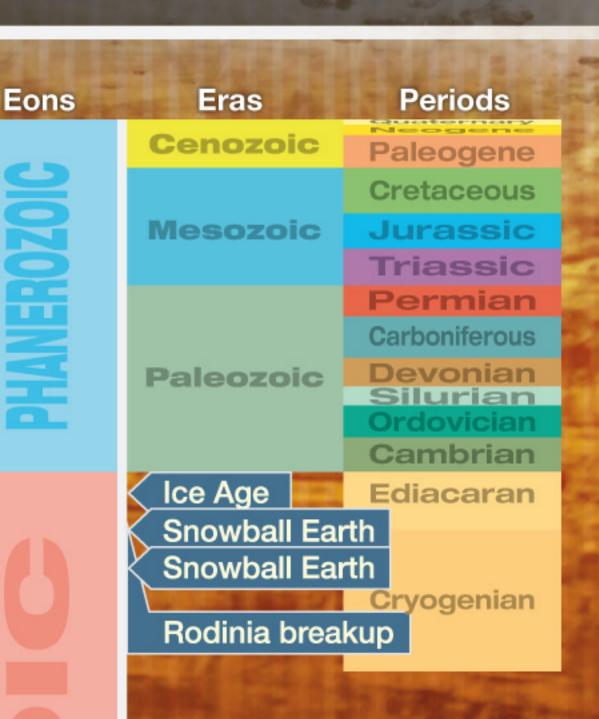
3600

3800


4000

4600

BioInteractive.org/EarthViewer


CHANGING PLANET Past, Present, Future

EARTH EVOLUTION

The Intersection of Geology and Biology

The Earth is approximately 4.6 billion years old. Over this vast span of time, the planet has changed dramatically from an inhospitable sphere of molten rock to a diverse world rich with life. The world we live in today is the product of complex interactions between life and the environment.

Supercontinent Rodinia forms

Early supercontinent (Nuna)

At the beginning and end of

extended all the way to the

equator. The ice eventually

gases ejected by volcanoes

sphere, warming the planet.

Subduction

Earliest evidence for plate tectonic movements

accumulated in the atmo-

Plate Tectonics

Plates melt and

are recycled >

receded as greenhouse

the Proterozoic Eon, glaciers

Snowball Earth

Mass Extinctions

Geologic Carbon Cycle

Volcano

Greenhouse Effect

inhospitable environment.

Absorption

Atmosphere

Mid-ocean ridge

Outer core

Earth's crust is composed of large plates that move in response to forces generated by con-

As sunlight warms the Earth, it re-radiates

energy back to space. Greenhouse gases

absorb this energy, resulting in further warming.

Without the greenhouse effect, Earth would be

too cold for life, but too much of it can create an

Volcanoes release carbon dioxide—a greenhouse

Warmer temperatures accelerate rock weathering

reactions, which remove carbon dioxide from the

atmosphere. This cycle acts as a global thermostat.

Rock weathering

CaCO

Sedimentation

2000

gas-from the lithosphere into the atmosphere.

There have been multiple mass extinctions during the course of Earth's history in which dominant organisms were wiped out, opening up new evolutionary possibilities for survivors. The mass extinction at the end of the Cretaceous Period 65 million years ago is thought to have been caused by the impact of a large (11 km) meteorite. Other mass extinctions, however, appear to reflect environmental perturbation caused by Earth processes such as volcanism and climate change.

Bacteria

Phylogeny of Main Groups of Organisms

eukaryotes

rigin of

ukaryotes

Permian extinction First land vertebrates

Cambrian explosion

First land plants

800

1000

1200

1600

1800

2000

2200

2600

2800

3000

3200

3400

3600

3800

4000

4200

4400

4600

Time

Before

Present

(millions

of years)

Ediacaran diversification of large animals

Oxygen and Animal Size

Large active animals require high levels of oxygen. They did not evolve until the Ediacaran and Cambrian Periods, when oxygen rose to near-modern levels.

Origin of chloroplast by symbiosis

Oldest eukaryotic fossil

Origin of Eukaryotes

Eukaryotes are thought to have arisen as a result of symbiosis of different prokaryotes. The mitochondrion originated as a bacterium captured by another cell, possibly a member of the Archaea. Chloroplasts arose later by the symbiotic incorporation of cyanobacteria into a eukaryotic host.

Oxygen first reaches significant (about 1% of current) levels

Oxygenation of the Planet

Oxygen gas was not present in Earth's early atmosphere; it arose as a by-product of oxygenic photosynthesis. Initially, early microorganisms' photosynthetic reactions did not use water and did not release oxygen. Once oxygen-generating organisms evolved, oxygen reacted with dissolved iron and sulfide in the ocean

and did not accumulate. After these compounds

were oxidized, free oxygen started to accumulate.

Evidence of Early Photosynthesis The earliest known stromatolites—layered deposits made by photosynthetic microorganisms-suggest that photosynthesis arose at least 3.5 billion years ago. Today, photosynthesis fuels most eco-

systems on Earth, but Earth's earliest biological communities may have been driven by chemosynthesis, gaining energy from chemical reactions to form organic compounds.

Photosynthesis; Oldest fossils on Earth; Stromatolites

Oldest chemical signature of life

vection of material in the underlying mantle. Plate movements have resulted in the formation of supercontinents such as Nuna, Rodinia, and Pangea, at different times in Earth's history. Oldest rock

Rock Types 101

Igneous: Form when molten materials cool and harden, either beneath the Earth's surface or in a volcanic eruption.

New plate material forms

Sedimentary: Form at the Earth's surface when particles eroded from older rocks accumulate or when minerals from lake, river, or ocean water precipitate.

Collisions form

mountain

ranges

Metamorphic: Form when existing rocks are changed by heat and pressure.

Earth forms by accretion from solar dust cloud

common

ancestor

Life and Chemical Cycling

All life depends on carbon, hydrogen, nitrogen, oxygen, sulfur, and phosphorous. These elements are abundant in the lithosphere and/or atmosphere and cycle between the two. Naturally occurring forms of sulfur and nitrogen cannot be used by living organisms. Early in Earth's

history, microorganisms evolved mechanisms to extract these elements from the environment, allowing rapid growth of Earth's ecosystems (biosphere). These microbial mechanisms remain essential to life on Earth-billions of years later.

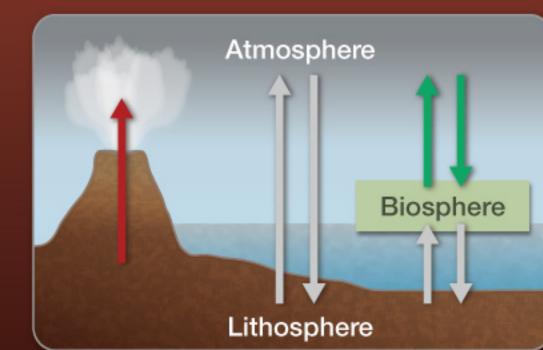


Photo Credits Acasta Gneiss: Chip Clark, Smithsonian Institution Earth: NASA, The Visible Earth Grand Canyon NP: iStockphoto/Thinkstock Grypania Spiralis: James St. John, Ohio State University at Newark Mass Extinction: Hemera/Thinkstock

Oxygen and Animal Size: iStockphoto/Thinkstock

Photosynthesis: iStockphoto/Thinkstock Rocks 101: Marble and Sandstone, iStockphoto/Thinkstock Stromatolites: iStockphoto/Thinkstock Temperature Map: NASA/JPL

BioInteractive

Tell us how you use the poster: www.bitly.com/EarthPosterSurvey

Tree: iStockphoto/Thinkstock, Jupiterimages/Photos.com/Thinkstock,

Hemera/Thinkstock

© 2012, 2015 Howard Hughes Medical Institute. This poster is provided free of charge by HHMI for educational purposes; the poster may not be sold or resold. All other rights reserved.