Activa JavaScript para disfrutar de los vídeos de la Mediateca.
Transformaciones Geométricas
Ajuste de pantallaEl ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:
Hoy vamos a hacer un vídeo muy cortito sobre imágenes y transformaciones geométricas.
00:00:00
Arrancamos nuestro GeoGebra y vamos a insertar una imagen.
00:00:08
Podemos seleccionar el archivo que tendremos en nuestro disco duro,
00:00:14
le damos a abrir y ya tenemos aquí nuestra imagen.
00:00:19
La voy a poner aquí arriba.
00:00:23
y tirando de los puntos A y B, puedo colocarlo como me dé la gana en nuestro ejercicio, ¿de acuerdo?
00:00:24
Para poner imágenes.
00:00:38
Y ya que tenemos una imagen, pues vamos a ver las transformaciones geométricas.
00:00:40
Por ejemplo, ¿cómo se hace una traslación?
00:00:44
Pues necesito un vector, ¿de acuerdo?
00:00:47
Vamos a pincharle aquí y aquí.
00:00:50
Y ahora aquí tendríamos traslación de la imagen con respecto al vector.
00:00:53
Entonces, como vemos, nos ha creado una copia con respecto al vector U.
00:01:02
Si yo cambio el vector U, pues lógicamente, dinámicamente, cambia la imagen.
00:01:09
¿De acuerdo?
00:01:17
si cambio también la imagen original
00:01:18
pues lógicamente se copia en dos sitios
00:01:22
si yo quiero hacer un giro
00:01:25
pues necesito un centro de giro
00:01:28
por ejemplo le voy a poner aquí el centro de giro
00:01:31
entonces voy a definir un ángulo
00:01:34
para hacerlo dinámicamente
00:01:37
voy a utilizar esta vez el teclado que nos propone
00:01:39
aquí tan bonito, ponemos alfa
00:01:43
igual a 30
00:01:45
y ahora vamos a buscar grados
00:01:49
si soy capaz
00:01:51
grados, doy enter
00:01:54
y ya tengo mi ángulo de 30 en 30 grados
00:01:57
si ahora hago
00:02:00
rotación
00:02:02
de la imagen con respecto al punto E
00:02:04
borro 45
00:02:09
que sería un dato estático
00:02:12
Y pongo alfa, que sería un dato dinámico
00:02:13
Y ya tengo mi imagen, otra copia, girada a 30 grados con respecto a ahí
00:02:16
Obviamente, manejando mi deslizador
00:02:22
Puedo hacer lo que quiera con la imagen
00:02:27
Esto no se podría hacer solo con una imagen
00:02:31
Esto se hace con cualquier objeto
00:02:33
Un polígono que yo haya dibujado
00:02:35
O alguna cosa que tenga de esto
00:02:37
¿De acuerdo?
00:02:41
Bueno, ahora vamos a hacer, ¿qué más?
00:02:43
Pues podemos hacer una simetría central con respecto a un punto.
00:02:49
Entonces doy el dibujo, el punto E, y aquí tengo mi simetría central.
00:02:58
Por supuesto, es lo mismo que un giro de 180 grados, ¿vale?
00:03:04
Y por supuesto, si muevo el punto E o muevo el original, pues se desplaza la imagen.
00:03:12
Por último nos quedaría una simetría axial, así que cojo la herramienta recta, pinto dos puntos para definir la recta y elijo simetría axial.
00:03:26
Imagen, recta y ahí tengo mi simetría axial.
00:03:38
Si me acerco, pues lógicamente va haciendo la simetría
00:03:42
Y si cambio la recta, pues también
00:03:49
¿De acuerdo?
00:03:52
Así que todas estas cosas podemos hacer con una imagen
00:03:54
Pero además, yo estos puntos, por supuesto, ahí ve, los puedo hacer que no sean visibles
00:03:58
Es decir, no tienen por qué estar ahí
00:04:06
Si yo ya no quiero cambiar la imagen original de forma y tamaño
00:04:08
Pero también les puedo borrar
00:04:12
Si yo borro el punto A y el punto B
00:04:14
La imagen se convierte, digamos, en el tamaño de la original
00:04:19
Y la puedo seguir moviendo
00:04:24
Lo que pasa es que ya habría perdido la capacidad de cambiarle de tamaño o de orientación
00:04:26
Pero eso no es cierto del todo
00:04:33
porque si me voy a propiedades, en posición tengo tres esquinas, como veis la esquina 1 es el 1,3, la esquina 2 es este puntito,
00:04:35
entonces si yo le quiero cambiar el tamaño sin deformar y voy a ponerle, imaginaros, en 4,3, entonces elijo y hago el punto 4,3
00:04:46
y cuando doy enter
00:04:59
pues ha puesto esto en una esquina
00:05:02
y este en otra esquina
00:05:04
sin necesidad de puntos
00:05:05
pero además si lo quiero deformar
00:05:08
por ejemplo, pues ahora podría poner
00:05:10
sería el tercer punto
00:05:12
obviamente es
00:05:14
vamos a probar cuál de los dos es
00:05:16
creo recordar que es este
00:05:19
o sea que voy a poner 3, 6
00:05:20
y entonces lo estirará
00:05:22
damos enter
00:05:25
no, era
00:05:27
en sentido antihorario, lógicamente
00:05:28
debería haber puesto
00:05:31
4, 6
00:05:32
perdón
00:05:34
en la esquina 4
00:05:38
4, 6, pues no
00:05:42
perdón, claro
00:05:46
es que
00:05:48
es 1, 6, tenía yo razón
00:05:49
al principio, esta
00:05:52
os recuerdo
00:05:54
en la esquina, vamos a hacer esto más lejos
00:05:55
Esta es la esquina 1
00:05:58
Esta es la esquina 2
00:06:01
Y esta es la esquina 4
00:06:03
La esquina 4
00:06:05
Porque la 3 se la salta
00:06:08
Y sí que es cierto que va en sentido antihorario
00:06:11
Pero esta es la esquina 4
00:06:13
Y así lo hemos deformado
00:06:15
Si queremos que vuelva a estar sin deformar
00:06:17
Borro la esquina 4
00:06:20
Y no se recupera
00:06:21
tendríamos al revés, ya que ponerlo nosotros sí que debería haberlo recuperado.
00:06:27
Vamos a ver, porque...
00:06:35
Bueno, borrando siempre se arregla,
00:06:39
volvemos yendo hacia atrás, pero seguramente habiendo dado atrás y adelante lo hubiera arreglado,
00:06:43
porque al borrar la esquina 4 debería haberse arreglado.
00:06:53
Y con esto hemos terminado el vídeo.
00:06:56
- Autor/es:
- Pablo J. Triviño Rodríguez
- Subido por:
- Pablo Jesus T.
- Licencia:
- Reconocimiento - No comercial - Sin obra derivada
- Visualizaciones:
- 384
- Fecha:
- 30 de mayo de 2017 - 1:16
- Visibilidad:
- Público
- Centro:
- IES CARMEN CONDE
- Duración:
- 06′ 59″
- Relación de aspecto:
- 1.88:1
- Resolución:
- 1920x1022 píxeles
- Tamaño:
- 23.13 MBytes