Saltar navegación

Activa JavaScript para disfrutar de los vídeos de la Mediateca.

B2Q U08.2 Valoraciones ácido-base - Contenido educativo

Ajuste de pantalla

El ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:

Subido el 21 de agosto de 2021 por Raúl C.

86 visualizaciones

Descargar la transcripción

Hola a todos, soy Raúl Corraliza, profesor de química de segundo de bachillerato en el IES Arquitecto Pedro Gumiel de Alcalá de Henares 00:00:15
y os doy la bienvenida a esta serie de videoclases de la unidad 8 dedicada a la segunda parte del estudio de las reacciones ácido-base. 00:00:24
En la videoclase de hoy discutiremos las valoraciones ácido-base. 00:00:33
En esta videoclase vamos a estudiar las valoraciones ácido-base, que son técnicas cuantitativas 00:00:40
que permiten calcular la concentración desconocida de una cierta disolución de un ácido o una 00:00:53
base. Supongamos por simplicidad que tenemos una cierta disolución de un ácido y que 00:00:59
queremos calcular la concentración del ácido dentro de esa disolución. Lo que vamos a 00:01:04
hacer es lo siguiente. Vamos a medir un volumen exacto de esta disolución, de esta disolución 00:01:10
de carácter ácido, y la vamos a hacer reaccionar con un cierto volumen de una base fuerte de 00:01:16
concentración conocida, buscando la neutralización completa del ácido con la base, en lo que se 00:01:23
conoce como punto de equivalencia. En ese momento, cuando se ha producido la neutralización completa 00:01:30
del ácido y de la base, sabemos que tanto uno como el otro han reaccionado por completo 00:01:36
y se encuentran en proporciones tequiométricas. Cuando hemos añadido los dos volúmenes se 00:01:42
encuentran en proporciones tequiométricas. Si nosotros conocemos la concentración y 00:01:46
el volumen de la disolución básica que hemos utilizado para valorar la concentración de 00:01:52
la disolución ácida desconocida, sabremos qué cantidad de base había. Puesto que ha 00:01:58
reaccionado en proporción estequiométrica conocida con el ácido, podremos determinar la cantidad de 00:02:03
ácido que había contenida en su disolución para que haya reaccionado con la base. Y, puesto que 00:02:09
conocemos el volumen de la disolución inicial del ácido, conocida la cantidad, conocida el volumen, 00:02:14
podemos calcular la concentración. Esto, que consiste en valorar una disolución ácida con 00:02:20
una disolución básica fuerte de concentración conocida, es lo que se conoce con el nombre de 00:02:27
acidimetría. En el caso contrario, cuando la disolución desconocida es de carácter básico 00:02:32
y la estamos valorando con una disolución de un ácido fuerte con concentración conocida, 00:02:37
se llama alcalimetría. Para ver cómo funciona desde el punto de vista experimental, vamos a 00:02:41
considerar estas dos figuras. Supongamos que tenemos una cierta disolución de ácido clorhídrico 00:02:47
de concentración desconocida, en realidad sabemos que es 0,1 molar, y la queremos valorar con 00:02:54
una disolución de una base fuerte, que es hidróxido de sodio, con una concentración 00:03:02
conocida 0,2 molar. Lo que vamos a hacer es tomar 50 mililitros de esa disolución de 00:03:07
ácido clorhídrico con concentración a priori desconocida, aunque insisto en que nosotros 00:03:14
sabemos a efectos prácticos que es 0,1 molar. En ese volumen de 50 mililitros de disolución 00:03:18
de ácido clorhídrico, en principio de concentración desconocida, introducimos un pH metro y 00:03:27
medimos un pH tal que éste, igual a 1. A continuación lo que hacemos es ir añadiendo 00:03:32
gota a gota la disolución de hidróxido de sodio 0,2 molar y lo que vamos a hacer es ir midiendo 00:03:38
el pH con el pHímetro y representando el pH de la disolución en función del volumen de esa 00:03:46
disolución de hidróxido de sodio añadido. En cualquiera de los casos lo que se observa es un 00:03:53
comportamiento igual. Vamos viendo cómo, conforme vamos añadiendo base al ácido, se produce la 00:03:59
reacción de neutralización y, consecuentemente, el pH de la disolución va aumentando, se va 00:04:05
aproximando a 7. El pH va aumentando, va aumentando, va aumentando y, conforme nos vamos aproximando 00:04:11
al punto de equivalencia, el pH experimenta un cambio brusco en el que, con una o dos gotitas 00:04:19
más, experimenta una subida muy fuerte. En el momento en el que nos encontramos en esta región, 00:04:25
con un pH superior a 7, lo que ha ocurrido es que hemos introducido de la base una cantidad mayor 00:04:32
de la que neutraliza por completo al ácido y, consecuentemente, lo que obtenemos es una 00:04:38
disolución con carácter básico. Si nosotros siguiéramos insistiendo, añadiendo gota tras 00:04:42
gota de la disolución de hidróxido de sodio y fuéramos monitorizando qué es lo que ocurre con 00:04:47
el pH, pues veríamos que el pH sigue aumentando cada vez más despacio hasta alcanzar un valor 00:04:52
asintótico que se correspondería con el pH de una disolución de hidróxido de sodio 0,2. Si nosotros 00:04:58
somos capaces de reproducir esta curva, nosotros ya sabemos que para ese volumen inicial de ácido 00:05:06
clorhídrico de concentración desconocida, el punto de equivalencia que se corresponde con este punto 00:05:11
donde la curva se divide en dos partes simétricas se corresponde con un volumen de disolución de 00:05:18
hidróxido de sodio añadido de en torno a 25 mililitros. Lo que habríamos de hacer es afinar 00:05:25
un poco más e ir añadiendo, para buscar si es 25, 24 o 23, e ir añadiendo mucho más despacio el 00:05:30
hidróxido de sodio. Si nosotros somos capaces de determinar precisamente el volumen en el cual se 00:05:38
alcanza el punto de equivalencia y nosotros nos encontramos que justo con 25 mililitros de la 00:05:45
disolución de hidróxido de sodio el pH es idénticamente 7 porque hemos determinado que 00:05:50
ese es el punto de equivalencia. Bueno, pues conocida la concentración y el volumen de la 00:05:56
disolución de hidróxido de sodio, podremos calcular la cantidad de hidróxido de sodio que ha reaccionado. 00:06:02
Podríamos escribir la ecuación de neutralización del ácido clorhídrico con el hidróxido de sodio 00:06:08
y determinar que la cantidad de ácido que había dentro de su concentración 00:06:12
es la que está en proporción estequiométrica con dicha cantidad de hidróxido de sodio 00:06:17
y, puesto que teníamos 50 ml de esa disolución de ácido clorhídrico, 00:06:20
podríamos determinar cuál es la concentración. 00:06:25
Más adelante vamos a poder hacer estos cálculos en un ejemplo numérico. 00:06:29
En el caso de que estuviéramos haciendo no una acidimetría sino una calimetría, 00:06:35
el proceso es exactamente el mismo y la curva que nosotros tendríamos que estudiar es absolutamente equivalente. 00:06:40
El pH inicial se corresponde con el de la disolución de carácter básico. 00:06:47
Conforme vamos añadiendo gota a gota la disolución del ácido, el pH va disminuyendo. 00:06:52
En el viraje encontraríamos el punto de equivalencia. 00:06:57
Esta curva será simétrica y el punto de equivalencia será punto de simetría. 00:07:01
Podríamos ir afinando y, igual que antes, conocido el volumen y la concentración de la disolución de ácido que neutraliza por completo la disolución de carácter básico, 00:07:05
conocido el volumen de la disolución de carácter básico, podríamos calcular la concentración. 00:07:16
Para ver cómo operar desde el punto de vista cuantitativo, vamos a resolver qué es lo que ocurre en este diagrama de Lefkielma. 00:07:21
Vamos a considerar que han sido necesarios 25 mililitros de la disolución 0,20 molar de hidróxido de sodio para neutralizar por completo y alcanzar el punto de equivalencia esos 50 mililitros de la disolución de concentración desconocida de ácido clorhídrico. 00:07:31
Sabemos que debemos obtener valor 0,1 molar. 00:07:50
Pues bien, lo que vamos a hacer es, en primer lugar, escribir la reacción de valoración, que es la reacción de neutralización del ácido clorhídrico con el hidróxido de sodio. 00:07:54
Ácido más base va a producir una sal, cloruro de sodio, más agua. 00:08:04
Fijaos en que en este caso tanto el ácido como la base son ácido y base de Arrhenius, luego la ecuación de neutralización, la reacción de valorización que tenemos aquí es directamente la de Arrhenius, sal más agua. 00:08:10
A la vista de los coeficientes estequiométricos, podemos deducir que la cantidad de ácido clorhídrico que había contenida en su disolución, en esos 50 ml, es igual a la cantidad de hidróxido de sodio que he contenido en su disolución, en esos 25 ml de la disolución 0,2 molar. 00:08:22
Así pues, la cantidad de ácido clorhídrico coincide con la de hidróxido de sodio, 00:08:42
esta la vamos a calcular multiplicando su concentración en unidades de molaridad por el volumen en litros. 00:08:47
Resulta que la cantidad de ácido clorhídrico que hay dentro de su disolución es 5 por 10 a la menos 3 moles. 00:08:52
La concentración en unidades de molaridad del ácido clorhídrico, que es lo que queremos calcular, 00:08:59
se calcula sin más que dividir la cantidad entre el volumen en litros y entonces obtenemos, sorpresa, 00:09:04
que el ácido clorhídrico tiene una concentración 0,1 molar. En cuanto al pH de la disolución en el 00:09:09
punto de equivalencia, vuelvo atrás, es 7. Y no es casualidad que sea 7. Ojo, no es porque se trate 00:09:18
de una neutralización. Se trata de una neutralización de un ácido y una base fuertes y esa es la clave. 00:09:25
En este caso, lo que podemos discutir es que el cloruro de sodio que se produce por la neutralización completa del ácido y la base es una sal soluble en disolución acuosa, se va a disociar por completo. 00:09:34
Y aquí tenemos escrita la ecuación de disociación. 00:09:47
Y lo que tenemos que hacer en este momento es hablar de hidrólisis. 00:09:50
El catión de sodio, uno más, y el anión cloruro, ambos, son conjugados de una base y un ácido fuertes. 00:09:55
en el caso del catión de sodio 1+, del hidróxido de sodio, en el caso del anión cloruro, del ácido 00:10:02
clorhídrico. Consecuentemente, ninguno de los dos experimenta hidrólisis y, consecuentemente, 00:10:08
la disolución resultante tiene carácter neutro. No sólo con este experimento hemos podido calcular 00:10:14
la concentración, sino que además hemos podido caracterizar el ácido como un ácido fuerte, 00:10:21
Puesto que en la neutralización de una base fuerte con un ácido, el pH que se obtiene en el punto de equivalencia es 7 sólo cuando el ácido es fuerte. 00:10:26
De forma análoga, podríamos operar en el caso de la alcalimetría en lugar de la acidimetría. 00:10:37
En estos diagramas podemos observar qué es lo que ocurre cuando estamos haciendo la valoración no de un ácido o una base fuerte, sino de un ácido débil y una base débil. 00:10:45
El comportamiento es análogo al que ocurre antes. Vamos a centrarnos en la acidimetría. El funcionamiento, el mecanismo es exactamente el mismo que el que teníamos antes. Vamos a medir 50 mililitros de una disolución de concentración desconocida, en este caso de ácido acético, ácido etanoico, de concentración desconocida, pero que en realidad sabemos que es 0,1 molar. 00:10:57
y lo que vamos a hacer es valorarla con una disolución de hidróxido de sodio 0,2 molar. 00:11:21
Hidróxido de sodio, una base fuerte. 00:11:26
Ocurre lo mismo, vamos añadiendo gota a gota la disolución de la base en la búsqueda del punto de equivalencia. 00:11:29
Observamos algo similar. Conforme vamos añadiendo la disolución de la base, el pH sube. 00:11:37
Cuando nos aproximamos al punto de equivalencia, el pH sube de una forma abrupta 00:11:43
abrupta y conforme continuamos añadiendo disolución básica, el pH sigue aumentando a un ritmo mucho 00:11:48
más lento. El punto de equivalencia en este caso ya no corresponde con un pH igual a 7. El punto 00:11:54
de equivalencia sigue siendo este punto en el cual este trozo de curva y este trozo de curva es 00:12:01
simétrico. No esta parte por completo del inicio, que no se corresponde con esta que tenemos aquí, 00:12:07
pero sí esta parte de la primera curva de la primera inflexión. 00:12:13
Igual que ocurría antes, una vez que tenemos trazada la curva por completo 00:12:18
y sabiendo dónde se encuentra aproximadamente el punto de equivalencia 00:12:22
podemos hacer una segunda valoración más fina o bien con una concentración menor 00:12:25
para intentar localizar mucho mejor este volumen. 00:12:30
Igual que antes, vamos a estudiar desde el punto de vista cualitativo esta misma situación 00:12:34
Y vamos a considerar que, igual que antes, hemos necesitado 25 mililitros de la disolución de hidróxido de sodio 0,20 molar para alcanzar el punto de equivalencia en la valoración de 50 mililitros de una disolución de ácido acético de concentración desconocida a priori. 00:12:39
La primera parte es exactamente igual a lo que estudiamos en el caso anterior. 00:12:59
En primer lugar, vamos a escribir la reacción de valoración, 00:13:04
que no es más que la reacción de neutralización del ácido acético, 00:13:08
el ácido etanoico, con el hidróxido de sodio, 00:13:12
para formar una sal, que en este caso sería el acetato de sodio, 00:13:15
aquí tenemos la fórmula química, y agua. 00:13:19
Nuevamente nos encontramos con un ácido y una base de Arrhenius, 00:13:22
Así que lo que tenemos aquí escrita es la ecuación de neutralización de Arrhenius. 00:13:26
A la vista de los coeficientes estequiométricos podemos deducir que la cantidad de ácido que ha reaccionado, 00:13:31
la que se encontraba contenida inicialmente en la disolución, 00:13:37
es igual que la cantidad de hidróxido de sodio que hemos añadido en su disolución, 00:13:40
que vamos a calcular multiplicando la concentración en unidades de molaridad por el volumen en litros. 00:13:45
Esto es lo que tenemos aquí expresado y obtenemos una cantidad de 5 por 10 a la menos 3 moles del ácido en su disolución. 00:13:51
Puesto que esta cantidad estaba contenida dentro de un volumen de 50 mililitros, sin más que dividir la cantidad entre el volumen en litros, obtenemos la concentración del ácido acético 0,1 molar, como habíamos dicho inicialmente. 00:14:00
En lo que corresponde a la discusión del pH de la disolución en el punto de equivalencia, nosotros, como podemos comprobar si volvemos atrás, tenemos un punto de equivalencia con un pH mayor que 7, lo que se corresponde con un carácter básico. 00:14:14
básico. Lo que podemos hacer es decir que la sal producida es acetato de sodio y que la cantidad 00:14:30
de acetato de sodio que se ha producido coincide con la cantidad inicial tanto del ácido como de 00:14:39
la base a la vista de los coeficientes estequiométricos de esta ecuación ajustada. Así pues, 00:14:44
de acetato de sodio lo que vamos a tener es una cantidad de 5 por 10 a la menos 3 moles. Esta 00:14:49
cantidad al final va a estar contenida dentro de una disolución con un volumen que es la suma del 00:14:56
volumen de la disolución inicial de ácido que estamos valorando más el volumen de la disolución 00:15:03
de base que hemos añadido para producir la valoración. 50 más 25 mililitros son 75 mililitros 00:15:08
y entonces podemos calcular la concentración de esta sal del acetato de sodio en esa disolución 00:15:14
una vez hemos alcanzado el punto de equivalencia. El acetato de sodio sabemos que es una sal soluble 00:15:21
en disolución acuosa se encuentra disociada por completo en el ión acetato y el catión de sodio. 00:15:28
Y aquí es donde empezamos a discutir la hidrólisis. Los cationes de sodio, uno más, son conjugados de 00:15:35
la base fuerte hidróxido de sodio, por lo cual no experimentan hidrólisis. No obstante, los iones 00:15:41
acetato son conjugados de un ácido que es débil, del ácido acético. Lo que va a ocurrir es que los 00:15:48
iones acetato que provienen de la disociación del acetato de sodio van a establecer un equilibrio 00:15:55
con las moléculas de agua. Si van a experimentar hidrólisis, si van a romper estas moléculas de 00:16:02
agua robándoles un hidrón y regenerando, aunque sea parcialmente, el ácido acético y a su vez 00:16:07
dejando libre iones hidróxido. Aunque sea parcialmente, este equilibrio se va a establecer. 00:16:13
Podemos ya cualitativamente justificar que la disolución resultante, que el punto de equivalencia, 00:16:21
tenga un pH de carácter básico, puesto que, dado que se produce la hidrólisis por parte de los 00:16:26
iones acetato, se producen iones hidróxido, su concentración aumentará por encima de 10 a la 00:16:33
menos 7. Y eso es lo que justifica que la disolución resultante tenga carácter básico. 00:16:38
Si queremos calcular el valor numérico concreto del pH, tenemos que hacer uso de la ley de acción de masas. 00:16:43
Y entonces lo que tenemos que hacer es, bueno, hemos calculado la concentración de acetato de sodio que se ha producido una vez que ha finalizado la valoración. 00:16:51
Nos llevamos esta concentración, esta cantidad por unidad de volumen, a la ecuación de disociación del acetato de sodio. 00:17:01
Y a la vista de los coeficientes estequiométricos podemos deducir que la concentración de ión acetato al final, cuando se ha producido la disociación completa, va a coincidir con la concentración inicial del acetato de sodio, puesto que se produce la misma cantidad contenida en el mismo volumen. 00:17:09
Esto es una concentración 6,667 por 10 a la menos 2 molar. 00:17:26
Esta concentración de ión acetato nos la vamos a llevar a la ecuación del equilibrio. 00:17:32
Tenemos el ión acetato que reacciona con el agua en equilibrio con el ácido conjugado y la base conjugada del agua. 00:17:39
Vamos a operar exactamente igual que en la unidad anterior. 00:17:49
La concentración inicial del ión acetato es conocida y la concentración del ácido acético y de hidróxidos va a ser cero. 00:17:53
Vamos a llamar alfa al grado de disocepción del ion acetato y entonces la cantidad que reacciona por unidad de volumen va a ser la que había multiplicada por alfa. 00:18:02
Esto es lo que se va a gastar de ion acetato y lo que se va a formar de ácido acético y de hidróxido. 00:18:12
En el equilibrio de ion acetato tendremos la cantidad inicial menos la que reacciona. 00:18:17
Extraeremos factor común a la cantidad y en el caso del ácido acético y del ion hidróxido lo que obtendremos es lo que reacciona. 00:18:23
Aplicando la ley de acción de masas, el cociente de reacción debe ser igual a la constante de basicidad de linoacetato, 00:18:31
puesto que el equilibrio que hemos considerado es el de linoacetato con el agua para producir su ácido conjugado y la base conjugada del agua. 00:18:40
Tened en cuenta que si no tuviéramos el valor numérico de la constante de basicidad de linoacetato, sino la constante de acidez del ácido acético, 00:18:49
podríamos calcular aquella en función de esta utilizando el producto iónico del agua, 00:18:58
como vimos en la unidad anterior. 00:19:03
Pues bien, como decía, utilizamos la lidiación de masas en el equilibrio para obtener esta ecuación. 00:19:05
El valor de la constante de basicidad del líon acetato del orden de 10 a la menos 10 toma un valor tan pequeño 00:19:12
que vamos a considerar la aproximación en la que, siendo el grado de asociación esperamos con un valor próximo a cero, 00:19:17
1 menos alfa sea próximo a 1. 00:19:25
Resolvemos la ecuación de segundo grado en completa y obtenemos para el grado de asociación el valor 9,327 por 10 elevado a menos 5, realmente próximo a cero, luego la aproximación es válida. 00:19:27
Este valor del grado de asociación nos permitirá calcular todas las concentraciones en el equilibrio sustituyendo en la tabla anterior. 00:19:40
En este momento nos interesa la concentración de iones hidróxido que resulta ser 6,218 por 10 a la menos 6 molar. 00:19:47
Queremos calcular el pH y lo vamos a hacer a partir del pOH. 00:19:57
Es 14 menos el pOH y el pOH es a su vez menos, por este menos más, 00:20:01
el logaritmo decimal de la concentración de iones hidróxido que teníamos aquí. 00:20:06
Y así pues lo que obtenemos es un pH igual a 8,8. 00:20:10
Puesto que este pH es mayor que 7, una vez más, la disolución resultante tiene carácter básico. 00:20:15
Este valor 8,8 se corresponde con este pH en el punto de equivalencia. 00:20:20
Con esto que hemos visto, tanto cualitativa como cuantitativamente, de las valoraciones ácido-base, ya podéis resolver los ejercicios propuestos 3 al 5. 00:20:29
En el aula virtual de la asignatura tenéis disponibles otros recursos, ejercicios y cuestionarios. 00:20:42
Asimismo, tenéis más información en las fuentes bibliográficas y en la web. 00:20:49
No dudéis en traer vuestras dudas e inquietudes a clase o al foro de dudas de la unidad en el aula virtual. 00:20:53
Un saludo y hasta pronto. 00:20:59
Idioma/s:
es
Autor/es:
Raúl Corraliza Nieto
Subido por:
Raúl C.
Licencia:
Reconocimiento - No comercial - Sin obra derivada
Visualizaciones:
86
Fecha:
21 de agosto de 2021 - 18:48
Visibilidad:
Público
Centro:
IES ARQUITECTO PEDRO GUMIEL
Duración:
21′ 28″
Relación de aspecto:
1.78:1
Resolución:
1024x576 píxeles
Tamaño:
38.34 MBytes

Del mismo autor…

Ver más del mismo autor


EducaMadrid, Plataforma Educativa de la Comunidad de Madrid

Plataforma Educativa EducaMadrid