26-2ESPAD - Contenido educativo
Ajuste de pantallaEl ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:
Y ahora las tonterías que empiezo a grabar, ¿no? Bueno, buenas tardes. Como siempre os digo, que si alguien tiene algo en contra de que se grabe una de estas clases, que lo diga ahora o que calle para sí, ¿no?
00:00:00
Pues parece que no habían entrado. Lo repito. Buenas tardes. Como siempre os digo, si tenéis algo en contra de que grabe la clase, pues me lo comunicas, ¿vale?
00:00:16
Bueno, pues vamos al grano. Estamos con las funciones. Como siempre os digo, mirad ejercicios de examen. Hoy es día 26. Nos quedan dos clases de funciones y luego dos clases de estadística.
00:00:30
Y ahí ya os digo, usar la calculadora, tenéis que usar la calculadora como nadie, pero el resto debería ser más sencillo, ¿vale?
00:00:47
Bueno, entonces, hoy vamos a hacer como una clase de repaso y vamos a ver alguna cosilla más.
00:00:58
Vamos a copiar y pegar, ¿no?
00:01:19
Entonces, esto ya deberíamos saber hacerlo. Y bueno, para representar algo gráficamente, ¿se ven los ejes? Los voy a señalar porque no se ven muy bien.
00:01:21
Buenas tardes, Lourdes. A ver, ¿cómo puedo hacer esto? Que se vea bien. Es que no sé si veis la X y la Y que hay ahí. Bueno, con mi pulso fantástico.
00:01:35
con impulso
00:01:53
fantástico, que veáis que
00:02:01
esos son los ejes
00:02:03
a lo mejor es posible
00:02:04
que en los siguientes os los
00:02:06
imaginéis, porque esto es peor que
00:02:08
¿no?
00:02:10
bueno, es que además
00:02:13
esta es la clase donde la tablet
00:02:27
no sé por qué, la tengo
00:02:29
más rebelde que ninguna
00:02:31
no soy de su tablet, profe
00:02:33
perdón
00:02:38
que no he compartido
00:02:39
no, está bien
00:02:41
está bien
00:02:43
sí
00:02:45
ah, que el pulso, el pulso no, no
00:02:46
estoy, vamos
00:02:49
después de esto
00:02:51
viene el delirium tremens, creo
00:02:53
a ver
00:02:55
bueno
00:02:56
disculpad las estas
00:02:59
pero es que es esta tablet en este sitio
00:03:01
sobre todo
00:03:03
bueno, entonces, vamos a ver
00:03:03
igual a menos 2x, sabemos que va a salir
00:03:06
una recta, ¿no?
00:03:09
¿Lo sabéis?
00:03:11
¿Sí? Vale.
00:03:13
Sabemos que va a salir una recta.
00:03:15
X y Y.
00:03:17
¿Qué valores daríais?
00:03:19
Para dar una recta, como mínimo,
00:03:23
dos puntos. Yo daría el 0,
00:03:26
el 1.
00:03:28
Con eso bastaría. Pero
00:03:30
para asegurarme voy a dar el menos 1.
00:03:32
Primero, porque soy maniático
00:03:34
y siempre quiero meter un número negativo.
00:03:35
Y segundo,
00:03:38
porque si los tres puntos no están
00:03:39
alineados, puedo corregir el error. Entonces, si la x vale 0, ¿cuánto vale la y? Menos 2 por 0,
00:03:41
que es 0. Si la x vale 1, ¿cuánto vale la y? Menos 2 por 1, voy a poner por lo menos,
00:03:50
menos 2 por 1, que es menos 2. Y si la x vale menos 1, ¿cuánto vale la y? Menos 2 por menos 1,
00:03:59
que es 2. El que quiera hacerlo a mano, a mano. El que quiera hacerlo a calculadora,
00:04:08
que lo haga con calculadora. ¿Vale? Que es 2. Entonces, señalo los puntos, el 0,0, el
00:04:13
1, menos 2, que está aquí, y el menos 1, 2, que está aquí. ¿Están alineados los
00:04:22
tres puntos? Sí, ¿verdad? Yo en el examen os dejaré calculadora y no os dejaré una
00:04:31
tableta de estas, sino que la hacéis directamente
00:04:39
con un lápiz, porque así, bueno,
00:04:41
estoy torciendo menos ahora, ¿no?
00:04:43
Bueno, parece que con la edad voy
00:04:48
mejorando, ¿no?
00:04:49
Bueno, y
00:04:51
ahora, ¿cuál es la pendiente de esta función?
00:04:53
¿Os acordáis
00:04:57
del otro día?
00:04:58
La pendiente es, si yo
00:05:01
avanzo uno, bajo
00:05:03
dos. Entonces, ¿cuánto
00:05:05
es la pendiente?
00:05:08
Paso dos y avanzo
00:05:13
uno. O sea, que es menos dos.
00:05:15
¿Hacía falta hacer esto? No, porque acordaos que el número que multiplica la X es la pendiente.
00:05:17
Vamos a hacer uno con un poco más de chicha. X igual a menos 0.5X. ¿Qué valor le daríais a la X?
00:05:25
0, 2
00:05:36
le podéis dar el 1
00:05:41
pero como no es al exacto
00:05:43
es mejor dar el 2
00:05:45
y menos 2
00:05:47
bueno, pues hago lo mismo
00:05:49
menos 0, 5 por 0
00:05:51
menos 0, 5 por 2
00:05:55
el que no sepa hacerlo
00:05:57
que lo haga con calculadora
00:06:02
menos 1
00:06:03
y menos 0, 5 por menos 2
00:06:04
1
00:06:07
Señalo el 0, 0, el 2, menos 1 y el menos 2, 1. Uno los puntitos y tengo que ver que están alineados. Bueno, vosotros os saldrá mejor que a mí. ¿Y ahora cuánto vale la pendiente?
00:06:08
Menos 0.5. Si no os dais cuenta de que es este número, recordad que para ir de aquí a aquí, bajo 1 y me muevo 2.
00:06:33
¿Sí? Vale. Entonces sale menos 1 medio, que es lo mismo que menos 0,5. Menos 0,5. ¿Qué valores daríais aquí? El 0, si le dais 2, 2 por 0,2 es 0,4. Si queremos que salga exacto, por contra hay que multiplicar eso.
00:06:54
Por 5, por ejemplo. Si lo hacéis con 0, 4 y sale 0, 8, se puede hacer, pero ¿qué es más fácil con el 5? Porque 5 por 2 es 10, ¿no?
00:07:27
Y ¿cuál pondríais también? El menos 5, ¿no? Pues aquí sale 0, ¿cuánto es 0, 2 por 5? 1.
00:07:41
Y te voy a poner a concursar en cifras y letras.
00:07:55
¿Veis? Estos tres puntos están alineados, ¿no? Sale esa recta.
00:08:27
¿Cuánto vale la pendiente? 0,2.
00:08:32
Si queréis hacerlo geométricamente, si yo voy de aquí a aquí, ¿cuánto subo?
00:08:40
De aquí a aquí. Un piso, ¿no? ¿Cuánto avanzo? 5.
00:08:48
Pues que sepáis que 1 sobre 5, 1 partido por 5 es 0,2.
00:08:54
Bueno, y la otra, os la dejo.
00:08:59
Para no hacer yo todo, no voy a hacerlo yo todo. Entonces, bueno, esto que sepáis que es de un material que hay en CIDEAD, que es un curso antiguo que había de distancia para adultos, si queréis verlo.
00:09:02
Bueno, eso es lo que se llama la función lineal, desproporcionalidad directa. Bueno, este por curiosidad. Todo esto no es lo más importante de... A ver, de momento lo importante es que sepáis dibujar una recta y próximamente una parábola.
00:09:25
Me parece que no he seleccionado esto. Vale. A ver. Esto se supone que es una función lineal. Si os fijáis, estamos siempre pasando por el origen. Este es el 0,0. Y este es el 0,0.
00:09:48
¿Sí? Bueno, ¿qué pasa si yo voy de aquí a aquí? ¿Cuánto avanzo? ¿Qué pongo abajo? 1. ¿Y arriba? 4, ¿no? 4. Bueno, pues la ecuación de esta recta es igual a 4 por X.
00:10:13
¿Qué pendiente tiene esta? A ver, tengo que buscar puntos exactos. Yo diría que este es exacto, ¿no? ¿Cuánto vale la pendiente aquí?
00:10:38
4, 5, 1, 2, 3, 4, 5, 1, 2, 3 y 4. Y aquí 1, 2, 3, 4 y 5.
00:10:51
Pues ¿cuál es la pendiente? Menos 4 quintos. Efectivamente, o sea que y es igual a menos 4 quintos por x.
00:11:13
¿cuánto es 4 sobre 5?
00:11:27
0,8 ¿no?
00:11:32
pues lo podéis poner
00:11:34
o con fracción
00:11:36
es lo mismo ¿vale?
00:11:36
pues esto repasando ya
00:11:39
las rectas que pasan por el
00:11:41
origen, bueno entonces me voy
00:11:44
a la función afín que también es una
00:11:48
recta pero quiero que recordéis
00:11:50
cuál era la diferencia con
00:11:52
con estas
00:11:54
que hemos visto ahora
00:11:56
a ver
00:11:57
vamos a ver
00:11:59
Uf, bueno, estas son las horizontales. Las voy a hacer aquí directamente. Estas son las más fáciles, pero a veces son las que más os cuestan. Atención. Dice, representa la función y igual a menos 2. ¿Qué valores le daríais a la x?
00:12:01
¿Cero? ¿Dos? Vale, yo también daría el uno y el menos uno. Si la X vale cero, la Y vale menos dos. Si la X vale dos, la Y vale menos dos. Si la X vale menos dos, la Y vale... siempre vale lo mismo, ¿no?
00:12:25
Bueno, a ver qué tal me salen los ejes ahora. Los ejes de mi carreta. Bueno, entonces, si la x vale 2, la y vale menos 2. Si la x vale 2, la y vale menos 2. Si la x vale menos 2, la y vale menos 2. ¿Cómo queda eso? Una recta horizontal. No tiene pendiente.
00:12:46
o la pendiente es 0
00:13:14
bueno, pues rápidamente
00:13:16
¿cómo sería la función?
00:13:19
sin tabla de valores ya
00:13:21
igual a 2
00:13:22
si la x vale 0
00:13:24
la y vale 2
00:13:26
si la x vale 2, la y vale 2
00:13:28
si la x vale menos 2, la y vale 2
00:13:30
o sea, es decir
00:13:33
que estoy en la altura 2
00:13:34
estoy en el segundo piso
00:13:36
más a la derecha más a la izquierda
00:13:37
bueno, estas son más
00:13:40
raras
00:13:43
las voy a hacer por curiosidad
00:13:43
porque aquí pone que x es igual a menos 2
00:13:46
o sea que la x siempre vale menos 2
00:13:50
a la y en este caso le puedo dar cualquier valor
00:13:54
por ejemplo
00:14:00
pues si la x vale menos 2
00:14:02
es aquí, la y vale 0
00:14:04
si la x vale menos 2, la y vale 1
00:14:06
si la x vale menos 2, la y vale menos 1
00:14:09
sale una recta que es absolutamente vertical
00:14:12
Estas no las voy a poner, pero que sepáis que hay rectas que son verticales. Pero la otra, fijaos bien, porque sí va a interesar para lo que viene más adelante.
00:14:15
Ahora, representa las rectas. Este ejercicio es muy bonito. Dice que representéis gráficamente esas rectas y halléis las actuaciones de esas rectas.
00:14:28
De todas formas, debería haber alguno antes.
00:14:59
a ver, no, no, este
00:15:41
bueno, este
00:15:43
el punto 2, 1 es este
00:15:45
o sea que es una recta vertical
00:15:47
¿no? bueno, pues que ecuación
00:15:49
tiene esto
00:15:53
si os fijáis, ¿cuánto vale la x?
00:15:54
esta es x
00:15:58
igual a 2
00:15:59
pensé que os había puesto un ejercicio más
00:16:00
interesante, pero bueno
00:16:03
vamos a hacer otra
00:16:04
a ver, aquí, 2 menos 3
00:16:06
está aquí, ¿no?
00:16:09
el menos uno menos tres está aquí
00:16:11
la recta es esta de aquí
00:16:13
¿qué es lo que vale siempre lo mismo?
00:16:15
pues
00:16:21
y igual a menos tres
00:16:21
¿sí? ¿vale?
00:16:23
bueno, con estas dos sería algo similar
00:16:25
no es el ejercicio más importante
00:16:27
del mundo
00:16:29
esto para los que sigáis
00:16:30
estudiando alguna
00:16:32
alguna
00:16:34
alguna cosa que tenga
00:16:36
que tenga gráficas
00:16:39
que tenga eso está bien, pero
00:16:41
por lo demás no es lo más importante
00:16:43
como os he dicho.
00:16:45
Esto tengo que
00:16:49
desolazarlo. Ah, sí. Bueno.
00:16:50
El siguiente.
00:16:53
Vamos a ver. Este
00:16:55
lo vamos a hacer
00:16:57
de dos formas.
00:16:58
Es que no tengo ratón aquí y hay veces que...
00:17:03
¿Qué tal?
00:17:06
¿Perdón? ¿Que se ha escondido
00:17:08
una gráfica por ahí?
00:17:09
Ah, sí. Está aquí el ratón.
00:17:12
¿No te lo han puesto?
00:17:13
Bueno, entonces, voy a coger esto. Y a ver, esto tiene dos versiones. A ver, dice, determina la posición relativa de esas dos rectas y en caso de que sean secantes, determina las coordenadas del punto de corte.
00:17:18
Esto hay dos formas de hacerlo. Dos formas. La primera. Yo tengo esta recta. ¿Cómo son dos rectas en el plano? O son paralelas o secantes, ¿no? O se cortan en un punto, ¿sí?
00:17:36
¿Sí? Sí. Estos son paralelas, paralelas y estos son secantes. Y si son secantes es que se cortan en un punto, ¿sí?
00:18:09
Entonces, este ejercicio es reversible. Yo primero lo voy a hacer como no lo suelo preguntar en el examen y luego como sí suelo preguntarlo en el examen.
00:18:24
Si yo quiero calcular el punto de corte de estas dos rectas, ¿qué tengo que hacer?
00:18:34
¿Esto qué es? Un sistema de ecuaciones, ¿no?
00:18:38
Pues lo resuelvo. ¿Cómo queréis que lo resuelva?
00:18:41
¿Cuánto vale x?
00:18:49
3y más 1, ¿os acordáis? Por sustitución, ¿sí?
00:18:56
¿Qué se hace con esto?
00:19:01
Se sustituye en el otro, ¿no?
00:19:05
O sea, 4 por 3y más 1 más y más 1 igual a 0, ¿no?
00:19:08
más 5 igual a 0, o sea que 13y es igual a menos 5, o sea que y es menos 5 partido por 13.
00:19:40
Esto en un examen no os lo voy a aprender, pero como sabéis hacerlo, quiero hacerlo en clase.
00:20:00
¿Cómo sacáis la X?
00:20:05
Multiplicando 3 por
00:20:09
menos 5
00:20:11
treceavos
00:20:14
más 1
00:20:15
¿Sabéis hacer esto con calculadora?
00:20:17
Por eso, cuando veáis un cálculo
00:20:20
dejádselo en la calculadora
00:20:22
porque esto sabéis
00:20:24
hacerlo, aunque no os lo pongáis
00:20:26
sabéis hacerlo
00:20:27
No sé qué es un resultado
00:20:28
que salga así raro
00:20:31
y ya estáis en el examen con dudas
00:20:32
Pero estas cosas sabéis hacerlo. ¿Cuánto sale? ¿Qué sale? ¿Menos 2 treceavos? ¿Menos 2 treceavos? Bueno, pues el punto de corte es menos 5 treceavos.
00:20:34
perdón
00:20:58
no, no, no, porque primero
00:21:01
primero se pone la x
00:21:03
menos 2 treceavos que es la x
00:21:05
menos 5 treceavos
00:21:07
¿sí? entonces
00:21:09
este punto
00:21:11
no se puede hacer gráficamente
00:21:13
como hicimos el otro día
00:21:15
entonces este es el método web
00:21:16
¿sí? pero el otro día os dije
00:21:19
otra forma de resolver sistemas
00:21:21
gráficamente que es el que sí os voy a pedir
00:21:23
en el examen
00:21:25
bueno, este
00:21:26
Para que veáis que este es muy distinto. Pone 2x menos 5y menos 1 igual a 0 y menos 4x más 10y más 1 igual a 0. ¿Cómo lo haríais? ¿Por sustitución o por igualación?
00:21:28
Perdón, por sustitución o por igualación.
00:21:49
Aquí no se puede despejar la x, ¿no? Pues esta la multiplicáis por 4 y la de abajo la multiplicáis por 2, ¿no? ¿Qué queda? 8x menos 10y, no, menos 20, ¿no?
00:21:51
menos 4 por 1 a 4 igual a 0
00:22:08
y la otra por 2
00:22:12
2 por menos 4, menos 8
00:22:13
2 por 20
00:22:15
2 por 10, 20
00:22:18
2 por 1, 2
00:22:20
sumo y atención
00:22:23
esto se va
00:22:28
esto se va
00:22:31
¿y qué me queda?
00:22:34
que menos 2 es igual a 0
00:22:37
¿qué significa eso?
00:22:39
que no tiene un punto de corte
00:22:46
Porque menos 2 no se va a la cero, ¿verdad?
00:22:48
¿Y qué quiere decir que no tienen punto de corte?
00:22:51
Que son paralelas.
00:22:57
Entonces, cuando salgo una cosa de este tipo es que son paralelas.
00:22:59
Ya os digo, si queréis seleccionar, yo estoy haciendo ejercicio,
00:23:04
soy un poco más saliéndome de lo que suelo preguntar,
00:23:08
por si a alguien le suena esto un poco más raro,
00:23:13
pero que creo que es bueno que os cuente, porque a veces haciendo cosas más difíciles, pues llegamos un poquito a dominar mejor lo que es base.
00:23:15
Bueno, aplicaciones. En una ciudad tienen implementada la ordenanza de regulación del ayuntamiento.
00:23:38
La norma indica que se debe pagar cierta cantidad por cada minuto y que no hay un mínimo. Juan pone una con 20 y el parquímetro indica que dispone de 30 minutos. Sara con un euro tiene 25 minutos. Y dice allá la ecuación que relaciona el precio con el tiempo y dibuja.
00:23:44
Y si pago 0,84, ¿de cuánto tiempo dispongo? ¿Y cuánto hay que pagar para estar 50 minutos? ¿A que el problema es bonito? Pues parece que no mucho, pero bueno.
00:24:01
Entonces, a ver, en una ciudad tienen el aparcamiento, ¿no? Y te dice que aquí tengo el tiempo, por ejemplo, en minutos y aquí, ¿qué tengo? El precio, ¿no?
00:24:24
Que se mide menos, ¿no? Entonces, Juan pone 1.20, bueno, he puesto, y tiene 30 minutos, pues pongo aquí, 15, 30, 45 y 60, ¿no? Y bueno, así sucesivamente.
00:24:52
Pone 1,20. Entonces, 1,20 sería 30 y pongamos aquí, ¿no? Este es el punto 30, 1,20. Y Sara con un euro tiene para 25 minutos. 25 está por aquí, ¿no? Y este es el punto 25,1. ¿Sí?
00:25:14
¿Sí? Entonces, ahora viene la gran pregunta. Esto hay que hacerlo gráficamente. No, a ver, este no lo voy a poner porque se complica mucho. Bueno, esto si os lo pusiera. Sabéis que aquí hay 50 minutos, ¿no?
00:25:43
bueno, pues si buscáis
00:26:02
aquí el precio, os sale el precio que tiene
00:26:05
que pagar, ¿vale? lo digo
00:26:07
que lo hagáis por una cuadrícula, esto no os lo voy a preguntar
00:26:09
porque hacerlo con
00:26:11
exactitud es
00:26:13
valiar, y ahora
00:26:14
si ponéis 0.84, si aquí
00:26:16
buscáis 0.84, tenéis que poner
00:26:19
el precio que van a dar cada momento
00:26:21
bueno, os lo pongo así, como que es un ejercicio
00:26:23
que sí se puede aplicar, pero
00:26:25
no quiero poneros
00:26:27
o sea, yo creo que el nivel vuestro
00:26:28
es de que sepáis hacer las cosas básicas
00:26:31
y que no os complique mucho la vida, ¿verdad?
00:26:34
¿Verdad? Bueno, pues eso.
00:26:38
Pero que sepáis que esto...
00:26:40
Vale.
00:26:42
Yo creo que estoy mezclando las cosas hoy.
00:26:46
Se me están mezclando las cosas
00:26:49
y no sé por qué eso.
00:26:50
Es que esta gráfica
00:27:02
me está haciendo
00:27:05
unas cosas rarísimas hoy.
00:27:06
Esta gráfica estaba por aquí
00:27:10
Y se me ha ido a tomar por saco. Entonces, voy a mezclarla. Ah, es que no estaba mezclada como carácter. Ya está. Vale. Bueno, vamos al grano, a lo de hoy, a lo más importante.
00:27:12
¿Por qué dijimos que íbamos a poner unos grandes puertos, no?
00:27:25
Esto, o sea, lo de las rectas está bien, que eso ya lo ha explicado aplicaciones y demás, y esto os lo puedo preguntar en dos versiones.
00:27:29
La primera es la más sencilla, es que os dan la fórmula, bueno, aquí encima os dan la tabla de valores, yo no os la daría.
00:27:38
Dice, completa la tabla de valores para dibujar la función igual a x cuadrado.
00:27:49
Si la x vale 0, ¿cuánto vale y?
00:27:55
0 al cuadrado, que es 0, ¿no?
00:28:00
Pisaos en la fórmula, os dan la fórmula, ¿sí?
00:28:03
Ahora, si la x vale 1, ¿cuánto es 1 al cuadrado?
00:28:06
1.
00:28:10
Ahora, menos 1 al cuadrado, acordaos que si el número es negativo hay que meterlo entre paréntesis.
00:28:12
¿Cuánto es menos 1 al cuadrado?
00:28:16
1.
00:28:18
2 al cuadrado.
00:28:19
Y menos 2 al cuadrado.
00:28:21
4 también.
00:28:24
Y 3 al cuadrado, y menos 3 al cuadrado. Entonces, atención, que ahora va a salir el punto 0, 0, el 1, 1, el menos 1, 1, el 2, 4, el menos 2, 4, el 3, 9, 5, 6, 7, 8, 9, y el menos 3, 9.
00:28:25
Y diréis, pero esto está mal, que no sale más recta, ¿no? ¿Qué es lo que ocurre? Que esta no es de grado 1, sino que es de grado 2. Bueno, pues que sepáis que cuando estamos representando una ecuación de grado 2, estamos poniendo unos cuernos que se llaman parabólicos, ¿no?
00:28:52
Las antenas parabólicas son así, pero de revolución, ¿no?
00:29:18
Bueno, pues que sepáis que de momento los cuernos van para arriba, pero también pueden ir para abajo.
00:29:22
Bueno, pues vamos a ver algún ejemplo.
00:29:32
Y esto sí que os lo podría poner en el examen.
00:29:34
A partir de una tabla de valores, dibuja la gráfica de esta función.
00:29:37
Y bien puede ser una recta o bien puede ser una parábola.
00:29:40
¿Estas son rectas o parábolas?
00:29:44
Parábolas.
00:29:48
¿Por qué?
00:29:48
Porque tienen grado 2, tienen un nx cuadrado.
00:29:49
¿Vale? Entonces, vamos a poner danos cuernos por acá abajo, ¿no? A ver cómo hago esto. Eso sí, como sabéis lo que va a salir, no os equivoquéis en las dos.
00:29:51
Voy a dejar que me digáis vosotros. Voy a dar el 0, el 1, el 2, el 3, el menos 1, el menos 2 y el menos 3.
00:30:09
Y os voy a decir a vosotros que me digáis cuánto es, para la primera gráfica, voy a hacer esta gráfica.
00:30:22
Para esta primera gráfica, ¿cuánto es menos 0 al cuadrado más 2?
00:30:30
calculadora a mano
00:30:34
como queráis, pero esto tiene que salir
00:30:39
2
00:30:41
cuidado
00:30:44
que aquí el número no es negativo
00:30:47
no se pone paréntesis, ¿cuánto es
00:30:49
menos 1 al cuadrado más 2?
00:30:51
1
00:30:58
1
00:30:58
no, no, porque
00:30:59
no tiene paréntesis
00:31:03
el número no es negativo, la x vale
00:31:04
1, el paréntesis se pone cuando
00:31:07
cuando la x es
00:31:09
negativa. Ahora, ¿cuánto es menos dos al cuadrado más dos? Menos dos. Muy bien. ¿Y cuánto es menos
00:31:10
tres al cuadrado más dos? Menos siete. ¿Y cuánto es, cuidado, menos menos uno al cuadrado más dos?
00:31:23
Para eso tenéis la calculadora. Uno. ¿Y cuánto es menos menos dos al cuadrado más dos? Menos dos. Da igual que lo hagáis con que os salga bien uno positivo y uno negativo. ¿Y esto sale? Menos siete.
00:31:38
Pues vamos a ver cómo nos quedan los cuernos. Porque ya sabemos que tienen que salir unos cuernos. 0, 2. 1, 1. 2, menos 2. 3, menos 7. 5, 6, 7. Aquí, ¿no? Aquí.
00:32:03
Y luego el 1, 1, 2, menos 2 y 3, menos 7.
00:32:20
¿Veis los cuernos?
00:32:29
Hacia abajo.
00:32:33
Pues así están.
00:32:39
El que quiera cuernos derechos, donde está el x cuadrado lo tiene que cambiar de signo.
00:32:44
Si alguien quiere cambiar de signo los cuernos, no hay problema.
00:32:53
Bueno, pues voy a aprovechar este gráfico de aquí y voy a hacer la siguiente. Es más candidata que os la ponga en el examen porque, a ver, a lo largo del curso tenéis que haber aprendido a usar la calculadora.
00:32:57
entonces, doy de nuevo
00:33:14
hasta luego, voy a dar solo 5 valores
00:33:17
¿vale? el 0, el 1, el 2
00:33:20
el menos 1 y el menos 2
00:33:23
entonces, si queréis cada uno, cada una
00:33:24
hacer 1
00:33:28
vamos a coger esta función
00:33:30
x cuadrado menos 4x más 2
00:33:33
o sea, tengo que hacer 0 al cuadrado
00:33:38
menos 4 por 0 menos 4
00:33:41
¿Sabéis hacer esto con calculadora?
00:33:44
Menos 4
00:33:54
Pues sí, porque esto es 0, esto es 0
00:33:54
Y solo queda menos 4
00:33:57
Pues coloco aquí menos 4
00:33:58
Ahora, donde está la x pongo un 1
00:34:00
¿No?
00:34:03
Os recuerdo que esta es x cuadrado
00:34:04
Menos 4x menos 4
00:34:06
Pues tengo que hacer 1 al cuadrado
00:34:09
Menos 4 por 1, menos 4
00:34:11
Y sale
00:34:13
Menos 7
00:34:14
Seguimos
00:34:18
Tengo que hacer 2 al cuadrado
00:34:19
Menos 4 por 2, menos 4. ¿Y sale? ¿Menos 8? Pues menos 8.
00:34:22
Ahora voy a hacer menos 1 entre paréntesis al cuadrado, menos 4 por menos 1, menos 4.
00:34:34
Y sale 1. Y por último, menos 2 al cuadrado menos 4 por menos 2. Es que hay una cierta simetría, pero no tiene por qué ser ella.
00:34:46
Esto, ya os digo, esto es que me demostréis que habéis aprendido a usar la calculadora durante este curso.
00:35:11
Para mí es lo bueno que tiene esto. O sea, si la x, aquí pongo menos 7, menos 8, 1 y 8. Y ahora tengo el 0 menos 4, que está por aquí, 1 menos 7, 2 menos 8.
00:35:19
¿Alguien quiere saber ya si los cuernos van a salir?
00:35:39
Uy, esto lo he dibujado mal
00:35:42
El 1 menos 7
00:35:44
A ver que si salen los cuernos para arriba o para abajo
00:35:46
El 2 menos 8 estaría aquí, ¿no?
00:35:50
El menos 2, 1
00:35:56
Y el 2, 8
00:35:58
2, 3, 4, 5, 6, 7 y 8
00:36:00
¿Cómo salen los cuernos? ¿Para arriba o para abajo?
00:36:03
A ver, sale un cuerno
00:36:11
Ahora, un consejo
00:36:14
Por aquí faltan puntos, ¿no?
00:36:17
O sea, aquí sería bueno que sí que cogiéramos el 3 o el 4 incluso, ¿no?
00:36:20
Para que veáis que remonta, ¿sí?
00:36:25
Os voy a coger el 3 porque si no esta parábola me quedan los cuernos cojeando, ¿no?
00:36:27
3 al cuadrado menos 4 por 3, menos 4.
00:36:34
Pues estas son cosas que uno tiene que valorar.
00:36:38
Y esto sale menos 7.
00:36:41
Bueno, pues esta parábola ya empezaría a remontar. Luego con el siguiente saldría por aquí. Una parábola tiene un eje de simetría.
00:36:46
Bueno, pues esto es. Y mirad que en el examen del año pasado había a partir de una tabla de valores, calcula, dibuja la gráfica. No sé si era de una recta o de una parábola.
00:37:00
Vosotros, a simple vista, tenéis que saber si va a salir una recta o una parágrafa.
00:37:12
¿Qué he hecho? Bueno, y no es mi día.
00:37:22
Y aquí lo anclo como carácter y ya está.
00:37:31
Y bueno, pues esta es la clase de hoy.
00:37:37
Por si queréis, la voy a guardar.
00:37:40
Sin facilidad.
00:37:45
Porque me queda otra clase. Os voy a ir enseñando lo que vamos a ir haciendo en otra clase y vamos viendo cosas que hay en los exámenes.
00:37:46
No sabía que iban a acabar tan pronto hoy. Bueno, la verdad es que os he metido algunos ejercicios que os he contado por encima porque creo que es mejor, es más conveniente.
00:37:58
Bien, entonces, a ver, esto lo voy a guardar. Vamos a ver la siguiente clase para... Algo debió pasar el año pasado de que teníamos menos tiempo y, bueno, vamos a ver la de la siguiente porque aquí es donde la siguiente clase tenemos que terminar las funciones.
00:38:09
A ver, función cuadrática es la función de segundo grado. El primer ejercicio que vamos a hacer la semana que viene es idéntico al de hoy, por si queréis ir adelantando trabajo. Hacéis una tabla de valores y a ver qué os queda. ¿Cómo pensáis que van a quedar los cuernos? ¿Para arriba o para abajo?
00:38:32
si ponen menos x cuadrado
00:38:52
para abajo
00:38:57
que sepáis
00:39:00
entonces cuando hagáis
00:39:01
es que esto es muy bueno que lo encontréis por vuestra
00:39:02
que hagáis la tabla de valores
00:39:05
que uséis la calculadora con más o menos
00:39:07
dependencia, da lo mismo
00:39:09
pero que sepáis hacer y que salga
00:39:11
una para otra
00:39:13
y si es una recta que salga
00:39:14
una recta, esto si no tuviera
00:39:17
x cuadrado pues saldría una recta
00:39:19
esto os lo enseñaré el próximo día
00:39:21
que es como se calcula el vértice
00:39:24
el vértice de la parábola
00:39:26
serían nuestras cabezas
00:39:27
que es donde se sitúan los cuerpos
00:39:29
¿y cómo se hace el punto de corte?
00:39:31
que es resolver una ecuación
00:39:37
que no es mucho más
00:39:38
entonces haremos este ejercicio
00:39:39
de dos formas
00:39:41
la función de proporcionalidad inversa
00:39:42
no es difícil de hacer
00:39:46
se hace con una tabla de valores
00:39:47
Lo que pasa es que hay que hacerlo con unos valores específicos, pero es que queda una cosa muy sencilla. Y ya vamos a hacer ejercicios de repaso del 0. A ver, ¿sabéis hacer el 1? Yo os digo ahora, ¿sabéis? Pero hay que practicarlo. Representa gráficamente dando valores apropiados, ¿sabéis?
00:39:50
¿Hacéis una tabla de valores?
00:40:09
¿Aquí qué tiene que salir? ¿Recta o parábola?
00:40:13
¿Recta? ¿Aquí? Parábola.
00:40:16
Por si alguien quiere intentarlo, esta es la que vamos a ver el próximo día.
00:40:19
Los valores que tenéis que dar a la X son valores para que esto salga exacto.
00:40:24
Entonces, ¿qué valores le puedo dar a X para que dividir 10 entre X sea exacto?
00:40:29
¿El 5 o el 2?
00:40:34
el 1 también
00:40:35
el menos 1, el menos 2
00:40:38
por si alguien quiere practicar
00:40:41
tablas de valores ya sabéis hacer
00:40:42
ahora
00:40:44
este, bueno este también
00:40:46
es lo mismo
00:40:49
pero bueno, este
00:40:49
lo vamos a hacer
00:40:52
dando valores
00:40:54
apropiados, ya os explicaré
00:40:57
pero vamos, esto lo vamos a hacer
00:40:58
esto lo vimos el otro día
00:41:00
resolver gráficamente
00:41:03
un sistema
00:41:06
¿sí? entonces esto
00:41:07
lo repasamos todo el próximo día
00:41:10
pero sí que os pediría que hagáis el esfuerzo
00:41:11
de intentar, porque cuando uno hace
00:41:14
el esfuerzo de intentar, aunque no le salga
00:41:16
viene aquí con la duda hecha
00:41:18
¿no?
00:41:19
mirad aquí, mirad el tutorial
00:41:22
esta clase está
00:41:24
colgada, sin gritar
00:41:26
mirad el tutorial porque
00:41:27
es que me interesaría que
00:41:30
hagáis el esfuerzo de intentar
00:41:31
hacer lo que veáis en el tutorial y que no
00:41:34
sale, porque luego venís, ¿sabéis
00:41:35
cómo se llama eso? clase invertida
00:41:38
¿sí? que primero uno estudia
00:41:40
y luego viene el profesor y explica
00:41:42
y a veces es mucho más
00:41:43
interesante, ¿no? como veis
00:41:45
tenéis muchos de resolver gráficamente
00:41:47
un sistema, aquí incluso está
00:41:49
puesta la solución por si alguien
00:41:52
quiere hacerlo, ¿no? entonces
00:41:53
esta es la clase del próximo día
00:41:55
y si alguien quiere ir mirando los
00:41:57
tutoriales, que los mire
00:41:59
Y ahora vamos por otra parte, que todavía nos quedan diez minutos. Pero os digo, a ver, en la clase de hoy ya cualquier tabla de valores sostiene que somos.
00:42:01
Y siempre está aquí Gonzalo. Es para ver, porque yo creo que ya debemos empezar a ver un poquito el final.
00:42:12
Los que tenéis aprobado todo, pues veréis ya lo que queda y los que os quede más, pues bueno, que sepáis que tenéis que ir repasando la primera y la segunda.
00:42:38
¿Dónde está esto? Preparación de exámenes, ¿no? A ver, para preparar la tercera evaluación, ejercicios de exámenes. ¿Sabéis leer una gráfica de una función?
00:42:56
¿os acordáis de esta mujer que si salió de casa
00:43:11
a los 20 minutos se le olvidó el móvil y demás?
00:43:15
o decir cuándo es creciente una cosa
00:43:18
cuándo es decreciente, cuándo es máxima
00:43:21
cuándo es mínima
00:43:24
representar una tabla con tabla de valores
00:43:25
esto sabéis hacerlo, que sepáis resolver gráficamente un sistema de ecuaciones
00:43:29
practicadlo porque está explicado
00:43:33
dibujar una parábola dando el vértice y los cortes con los ejes
00:43:36
Esto es lo que me queda de este tema, lo más importante. Y ahora, esta es la parte de estadística y de probabilidad. ¿Es sencilla? Sí, pero si no sabéis utilizar la calculadora se os va a atravesar.
00:43:39
Y yo os digo que aquí sí que os voy a tener que decir que busquéis el tutorial porque si no es complicado. Bueno, que veáis el examen del año pasado, veáis el consumo de agua en un colegio, sabéis leer una gráfica, pues demostrádmelo.
00:43:56
Representa esta función señalando sus elementos principales
00:44:12
Esto hay gente que no sabe hacerlo
00:44:17
Y hace una tabla de valores y le contuvo la mitad
00:44:20
Pero en una parábola se puede calcular el vértice
00:44:24
Y los puntos de corte
00:44:27
Como veis en el examen os dejo gráficas
00:44:29
Para que no salgan los chulos que me salen a mí
00:44:32
Resuelve gráficamente este sistema de ecuaciones
00:44:34
Esto está dado, pero mirad los tutoriales
00:44:39
¿Sí? Si hay alguna cosa que no sepáis de qué estoy hablando, me lo decís.
00:44:42
Representar esta función, ¿qué valores le daríais a la x?
00:44:48
Uno, dos, cuatro, menos uno, menos dos, menos cuatro.
00:44:52
Y el cero no se le puede dar, porque yo no puedo dividir cuatro entre cero.
00:45:00
Sepáis que el cero, ahí va a pasar algo.
00:45:05
Y esto ya es de la parte de estadística, ¿sí?
00:45:07
esto que completéis una tabla
00:45:09
que ya veréis que sabéis hacerlo
00:45:12
y esto es el juego
00:45:13
puro y duro, aquí empieza el mundo
00:45:16
de las apuestas
00:45:18
y ya veréis
00:45:19
el examen de la tarde
00:45:22
como veis la altura
00:45:24
de una persona
00:45:26
nos pregunta determinadas cosas
00:45:27
representa esta función
00:45:29
el que solo sepa con tabla de valores
00:45:31
que la haga con tabla de valores
00:45:33
le pongo la mitad pero el próximo día explicaré
00:45:35
cómo se hace, resuelve
00:45:37
gráficamente un sistema de ecuaciones.
00:45:39
Aquí, como veis, otra función
00:45:43
menos 6 partido por x.
00:45:45
Tenéis que saber qué valores se le dan.
00:45:47
Y luego queda la parte de estadística,
00:45:49
que esta es la que ya veremos.
00:45:51
Calcular el índice de variación,
00:45:53
que es una cosa muy bonita.
00:45:55
Y algo de probabilidad.
00:45:57
Y nada,
00:46:00
pues esto es lo que quería comentaros.
00:46:01
Salvo que si queréis que os haga
00:46:03
alguno de...
00:46:04
Si queréis que repasemos en cinco minutos cómo se hace un ejercicio de resolver un sistema gráficamente, ¿nos ponemos? ¿Os atrevéis? Vale, pues si os atrevéis, como sois tan valientes, os voy a complacer.
00:46:06
A ver, no, es que esto sería muy bueno que supierais hacerlo y a ver, en tres minutos, ¿no? Bueno, voy a hacer en tres minutos, pero voy a hacer uno muy sencillo.
00:46:24
A ver, por ejemplo, voy a poner x más y igual a 2, ¿no? Y 2x más y es igual a 5. Y es resolver gráficamente este sistema, ¿vale?
00:46:46
Entonces, primera ecuación. Pongo x y pongo y. Uf, esta no me gusta. No, la de abajo no me gusta. Bueno, sí, voy a dar valores. A ver, si la x vale 0, ¿cuánto vale la y? 2. ¿Lo veis?
00:47:06
x super cero más y igual a dos
00:47:39
o sea que y vale dos
00:47:42
y si la x vale uno, ¿cuánto vale y?
00:47:44
¿qué número tengo que sumarle a uno
00:47:47
para que me dé dos? Uno
00:47:48
pues dibujo el punto cero dos
00:47:50
y el punto uno
00:47:52
y hago la recta
00:47:53
como tengo la cuadrícula
00:47:56
me tiene que salir perfecto, podéis dar
00:47:58
los valores que queráis, aunque yo a veces
00:48:00
voy a dar los puntos de cuenta
00:48:02
y ahora por ejemplo, aquí
00:48:03
para que me salga exacto
00:48:06
Por ejemplo, si la x vale cero, ¿cuánto vale y? Cinco. ¿Lo veis? Si la x vale cero, esto vale cero igual a cinco. Y si la x vale uno, ¿qué me queda? Dos más y igual a cinco. Tres.
00:48:09
Pues dibujo el 0, 5, 1, 2, 3, 4, 5 y el 1, 3, que es este, ¿no? Bueno, pues como voy a hacer el dibujo perfecto, porque esta cuadrícula es mucho mejor que la otra que tenía, dibujo la recta.
00:48:28
¿Dónde se cortan?
00:48:46
En este punto, ¿no?
00:48:50
¿Qué punto es este? ¿Cuánto vale la X?
00:48:52
3 menos 1.
00:48:56
Pues, ¿cuánto vale la X?
00:48:59
¿Y la Y?
00:49:02
Aquí es bonito este ejercicio.
00:49:04
Porque sin hacer las cuentas, vais a hacer la comprobación.
00:49:07
3 menos 1, 2.
00:49:11
Y 3 por 2, 6.
00:49:12
3 menos 1, 5.
00:49:13
¿Sí?
00:49:15
Bueno, pues una cosa así os puedo poner, pero parece fácil, pero yo es que he hecho miles, claro.
00:49:16
¿No? O sea, miradlo, este ejercicio es muy importante y como ha dado tiempo, pues me parece muy interesante que busquéis parecidos en los exámenes o donde sea.
00:49:26
Y ahora sí, ya acabo. No sé qué he hecho de nuevo.
00:49:40
Yo creo que hay alguien que me boicotea antes de las clases. No voy a dar nombres, porque es muy feo. Bueno, pues nada, a los que estáis en casa, como siempre, un gusto. Y a los que estáis aquí, también otro gusto. Y muchas gracias por vuestra resistencia siempre.
00:49:47
Gracias, profesor.
00:50:10
A vosotros. Hasta pronto.
00:50:12
- Valoración:
- Eres el primero. Inicia sesión para valorar el vídeo.
- 1
- 2
- 3
- 4
- 5
- Subido por:
- Francisco J. M.
- Licencia:
- Reconocimiento
- Visualizaciones:
- 7
- Fecha:
- 26 de febrero de 2024 - 23:20
- Visibilidad:
- Clave
- Centro:
- IES LOPE DE VEGA
- Relación de aspecto:
- 1.78:1
- Resolución:
- 1920x1080 píxeles
- Tamaño:
- 67.53 MBytes
Para publicar comentarios debes entrar con tu nombre de usuario de EducaMadrid.
Comentarios
Este vídeo todavía no tiene comentarios. Sé el primero en comentar.