Activa JavaScript para disfrutar de los vídeos de la Mediateca.
Efecto fotoeléctrico - Contenido educativo
Ajuste de pantallaEl ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:
Resolución de problemas de efecto fotoeléctrico
Vamos a resolver el problema 5 de efecto fotoeléctrico.
00:00:00
Efecto fotoeléctrico.
00:00:07
Problema 5 de la página 319.
00:00:14
Aunque son problemas muy sencillos, pero bueno, ya que estamos, pues voy a resolver uno como si tuviera una pizarra blanca.
00:00:20
En este problema nos dicen que una radiación monocromática de longitud de onda 500 nanómetros
00:00:29
incide sobre una fotocélula de cesio, cuyo trabajo de extracción es 2,0 eV.
00:00:38
Y nos preguntan, en primer lugar, ¿cuál es la frecuencia umbral, que la llamamos nu sub cero, y la longitud de onda umbral de la fotocélula?
00:00:53
Y en segundo lugar, ¿cuál es la energía cinética de los fotoelectrones emitidos?
00:01:08
Hay dos datos que conocemos, que son, por un lado, la velocidad de la luz, que es 3 por 10 elevado a 8 en unidades de metros por segundo,
00:01:14
y por otro lado, la constante de Planck, que sabemos que es 6,63 por 10 elevado a menos 34 julios multiplicado por segundo.
00:01:24
Asimismo, conocemos la carga de electrón, que es 1,6 por 10 elevado a menos 19 coulombios, y es la equivalencia entre electronvoltios y julios.
00:01:35
Bien, vamos a resolver el problema.
00:01:47
Recordad que el trabajo de extracción va a ser igual a h, la constante de Planck, por la frecuencia umbral.
00:01:50
Por lo tanto, la frecuencia umbral será el trabajo de extracción dividido entre la constante h.
00:02:02
El trabajo de extracción no lo dan en electronvoltios, y deberíamos pasarlo a julios si queremos expresar la frecuencia umbral en hercios, en unidades del sistema internacional.
00:02:11
El trabajo de extracción, que es 2,0 electronvoltios, pues lo multiplicamos por la equivalencia entre electronvoltios y julios, que, como hemos dicho, sería la carga del electrón, 1,6 por 10 elevado a menos 19 julios.
00:02:22
Esto nos da un valor para el trabajo de extracción de 3,2 por 10 elevado a menos 19 julios.
00:02:40
Si sustituimos aquí los valores que conocemos, pues son 3,2 por 10 elevado a menos 19, y 6,63 por 10 elevado a menos 34.
00:02:49
Es decir, la frecuencia umbral será 4,83 por 10 elevado a 14 hercios.
00:03:04
También nos preguntan cuánto vale la longitud de onda umbral.
00:03:15
Sabemos que la velocidad de la luz sería lambda, en este caso la longitud de onda umbral, por nu sub cero, la frecuencia umbral.
00:03:19
Por lo tanto, la longitud de onda umbral sería c partido por nu sub cero.
00:03:28
La longitud de onda umbral será 3 por 10 elevado a 8, que es la velocidad de la luz, dividido entre el valor que hemos obtenido, 4,83 por 10 elevado a 14.
00:03:35
Esto nos da una longitud de onda de 6,21 por 10 elevado a menos 7 metros.
00:03:47
Es decir, 621 nanómetros, si lo expresáramos en nanómetros.
00:03:57
Por otro lado, nos preguntan cuánto vale la energía cinética de los fotoelectrones.
00:04:02
Habrá que aplicar la ecuación de Einstein, que dice que la energía del fotón se invierte.
00:04:08
Es decir, la energía de la luz incidente se invierte en extraer los electrones, es decir, lo que llamamos trabajo de extracción, y en comunicarles energía cinética.
00:04:15
La energía del fotón, sabemos que será h por nu, la frecuencia del fotón.
00:04:27
Y el trabajo de extracción, bueno, sabemos que será h nu sub cero, o como sabemos este valor, lo podemos dejar así.
00:04:34
Trabajo de extracción más energía cinética.
00:04:40
Como nos preguntan la energía cinética, pues la energía cinética será h nu menos trabajo de extracción.
00:04:44
Sabemos cuál es la longitud de onda, pero no la frecuencia.
00:04:53
Bueno, como sabemos, igual que antes, que la velocidad de la luz sería lambda por nu sub cero,
00:04:57
la energía cinética podemos expresarla como h por c partido por lambda menos el trabajo de extracción.
00:05:03
Con estos valores, la energía cinética sería 6,63 por 10 elevado a menos 34, por 3 por 10 elevado a 8,
00:05:12
dividido entre la longitud de onda, que son esos 500 nanómetros.
00:05:29
Bueno, no lo he cambiado aquí, lo voy a cambiar a metros.
00:05:34
Lambda, esos 500 nanómetros, habría que multiplicarlo por el equivalente, un nanómetro, 10 elevado a menos 9 metros.
00:05:39
Es decir, que serían 5 por 10 elevado a menos 7 metros.
00:05:50
Valor que pongo aquí, 5 por 10 elevado a menos 7.
00:05:57
Menos el trabajo de extracción, que lo voy a poner el que he calculado en julios, 3,2 por 10 elevado a menos 19.
00:06:01
3,2 por 10 elevado a menos 19 julios.
00:06:08
Bueno, pues teniendo en cuenta esto, el resultado que obtenemos es que la energía cinética de los fotoelectrones sería de 7,78 por 10 elevado a menos 20 julios.
00:06:14
Si lo pasásemos a electronvoltios, con la equivalencia que hemos visto antes, serían 0,49 electronvoltios.
00:06:29
Bueno, habéis tenido la suerte de que además habéis oído las campanadas del reloj de mi casa.
00:06:37
Espero que os haya servido para resolver el problema.
00:06:42
- Valoración:
- Eres el primero. Inicia sesión para valorar el vídeo.
- 1
- 2
- 3
- 4
- 5
- Idioma/s:
- Autor/es:
- Antonio Pérez Vicente
- Subido por:
- Antonio P.
- Licencia:
- Reconocimiento
- Visualizaciones:
- 18
- Fecha:
- 26 de abril de 2023 - 7:09
- Visibilidad:
- Público
- Centro:
- IES ISABEL LA CATOLICA
- Duración:
- 06′ 45″
- Relación de aspecto:
- 1.78:1
- Resolución:
- 1920x1080 píxeles
- Tamaño:
- 1.07
Para publicar comentarios debes entrar con tu nombre de usuario de EducaMadrid.
Comentarios
Este vídeo todavía no tiene comentarios. Sé el primero en comentar.