Activa JavaScript para disfrutar de los vídeos de la Mediateca.
3-Dinamica-maquina Atwood - Contenido educativo
Ajuste de pantallaEl ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:
Resolución problemas máquina de Atwood, cuerpos enlazados.
Vamos a hablar ahora de cómo resolver problemas de la máquina de Atwood y de cuerpos enlazados.
00:00:00
Bien, una máquina de Atwood es un sistema formado por una polea donde a ambos lados de la polea tenemos dos objetos.
00:00:07
Lo importante de este sistema es que se simplifica de manera que la polea consideramos que no tiene masa,
00:00:19
la cuerda tampoco tiene masa y además la polea no gira, de tal manera que la cuerda desliza a lo largo de esa polea.
00:00:26
Es como si fuese un cilindro por el que pasa la cuerda sin que el cilindro gire. La polea desliza a lo largo del cilindro.
00:00:36
Si tenemos dos objetos como estos, enlazados a través de la cuerda que pasa por ese sistema, este de masa m1 y este de masa m2,
00:00:44
si la masa m1 es mayor que la masa m2, el sistema se moverá hacia la derecha, hacia este lado, hacia m1.
00:01:01
Esto es lo primero que tenemos que tener en cuenta. ¿Cuáles son las fuerzas que están actuando?
00:01:14
El peso, en este caso p1, y la tensión. La tensión de la cuerda, si se está moviendo hacia abajo, va a ser menor que p1.
00:01:18
Vamos a dibujarla en este punto. Esta sería la tensión.
00:01:33
Una característica de la máquina de Atwood es que, como la polea no gira, el cilindro no gira, la cuerda desliza a lo largo del cilindro de la polea,
00:01:39
y por lo tanto la tensión es la misma en todos los puntos de la cuerda.
00:01:49
Eso quiere decir que la tensión en la masa 1 será igual a la tensión en la masa 2. Esto es muy importante a la hora de resolver los problemas.
00:01:54
Esta tensión es la misma. Y como el sistema se mueve hacia la masa m1, quiere decir que la masa m1 es mayor, p1 es mayor, y p2 será más pequeño.
00:02:03
Será más pequeño también que la tensión. ¿Cómo resolvemos este sistema?
00:02:16
Pues aplicamos la ecuación fundamental de la dinámica, sumatorio de fuerzas, vectores, es igual a masa por aceleración, a cada uno de los cuerpos por separado.
00:02:21
Para el cuerpo 1, como el sistema se mueve hacia la derecha, en este caso hacia abajo, p1 será positiva y la tensión negativa será igual a m1 por a.
00:02:32
En el caso 2, pues en el caso 2 se mueve hacia arriba, la tensión es positiva y p2 será negativa. Será igual a m2 por a.
00:02:47
La forma más fácil de resolverlo es sumar estas dos ecuaciones, porque si nos damos cuenta, al sumarlas, la tensión aquí está negativa, restando, y aquí está sumando.
00:03:00
Por lo tanto, al sumarlas se anularán. Me va a quedar p1 menos p2 será igual a m1 a más m2 a.
00:03:12
Como p1 será igual a m1 por g y p2 será igual a m2 por g, si sumo esto, m1 más m2, saco factor común la aceleración, esta será la aceleración del sistema.
00:03:24
Vamos a verlo con un ejemplo. Si consideramos la masa m1, 5 kg, y la masa m2, 3 kg, y sustituimos los valores aquí, pues me quedará...
00:03:43
Puedo sacar factor común la g, por lo tanto será 9,8, que es g, paréntesis, m1, 5 menos 3, dividido entre 5, más 3 kg.
00:04:05
El resultado, pues que la aceleración es 2,45 ms a la menos 2. Esa sería la aceleración con la que se mueve este sistema formado por dos masas, en este caso de 5 y de 3 kg.
00:04:21
- Valoración:
- Eres el primero. Inicia sesión para valorar el vídeo.
- 1
- 2
- 3
- 4
- 5
- Idioma/s:
- Autor/es:
- Antonio Pérez Vicente
- Subido por:
- Antonio P.
- Licencia:
- Reconocimiento
- Visualizaciones:
- 11
- Fecha:
- 26 de abril de 2023 - 6:44
- Visibilidad:
- Público
- Centro:
- IES ISABEL LA CATOLICA
- Duración:
- 04′ 38″
- Relación de aspecto:
- 1.78:1
- Resolución:
- 1920x1080 píxeles
- Tamaño:
- 759.89 MBytes
Para publicar comentarios debes entrar con tu nombre de usuario de EducaMadrid.
Comentarios
Este vídeo todavía no tiene comentarios. Sé el primero en comentar.