Activa JavaScript para disfrutar de los vídeos de la Mediateca.
Equilibrio 1. Química 2º bach - Contenido educativo
Ajuste de pantallaEl ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:
Buenos días, vamos a continuar con el temario. El otro día os dije que haríamos algún ejercicio más de cinética, química, pero el tema de cinética está muy relacionado con el de equilibrio.
00:00:00
Así que vamos a ver el tema de equilibrio, haremos algunos ejemplos mientras lo vamos viendo y posteriormente practicaremos con los ejercicios de cinética y de equilibrio.
00:00:12
Entran dentro del bloque de reacciones químicas que hemos pasado junto con cinética y con termodinámica.
00:00:21
En la parte inicial era solamente estructura atómica y enlace, con geometrías moleculares y todo lo que hemos visto.
00:00:31
Ya estamos en el bloque de reacciones químicas, que fue el tema de termodinámica, el tema de cinética y química, el de equilibrio.
00:00:40
Y de este bloque, que quizás es el más extenso de segundo dachidacto, buscaría la parte de ácido base y de R2.
00:00:48
Primero, vamos a ver lo que es el equilibrio químico.
00:00:58
Hay muchas reacciones, como el ejemplo que tenemos aquí puesto.
00:01:02
Directamente, cuando ocurren este tipo de reacciones, y viene indicado con una flecha unidireccional, una flecha que va solo hacia la derecha,
00:01:14
la reacción está ocurriendo hasta que se gastan totalmente los reactivos y se forman los productos, en la proporción estequiométrica que sea en cada caso.
00:01:23
Son reacciones que reaccionan totalmente.
00:01:35
Pero hay otro tipo muy importante, que van a ser las que vamos a estudiar en este tema, que no llegan a reaccionar totalmente, sino que llegan hasta un punto de equilibrio.
00:01:40
Un equilibrio, que es lo que tenemos aquí, es un equilibrio que llamamos dinámico.
00:01:49
Equilibrio dinámico en el sentido de que la reacción está ocurriendo de izquierda a derecha.
00:01:55
Si uno ocurre de izquierda a derecha, la velocidad a la que está ocurriendo esa reacción estará menor, porque, como vimos en el tema cinética, la velocidad depende de las concentraciones de los reactivos.
00:02:02
Y los productos que se están formando cada vez tienen una concentración mayor.
00:02:15
Un ejemplo que tenemos aquí, el tetraóxido de nitrógeno, para formar las moléculas de dióxido de nitrógeno, veis ya que hemos puesto una doble flecha,
00:02:20
esta reacción ocurre en ambos sentidos, entonces cuando la concentración del tetraóxido es muy grande, la velocidad hacia la derecha es muy grande.
00:02:29
Y, sin embargo, la velocidad inversa es muy pequeñita, porque la concentración de dióxido es muy pequeñita.
00:02:36
Según la reacción va ocurriendo, la concentración del producto del dióxido va incrementándose.
00:02:44
Si viéramos la velocidad de la reacción inversa, sería una constante multiplicada por la concentración del NO2 elevado a un exponente en función del orden de reacción.
00:02:52
Entonces, según aumenta la concentración de los productos, la velocidad inversa aumenta, mientras que la directa está disminuyendo.
00:03:05
Y llega un punto en el cual las dos velocidades, la directa y la inversa, se igualan.
00:03:14
Entonces, la sensación que da desde un punto de vista macroscópico es que la reacción se ha parado.
00:03:19
Pero la reacción no se ha parado, está ocurriendo en sentido directo y en sentido inverso, pero al mismo ritmo.
00:03:27
Entonces, la concentración de ambas especies queda constante.
00:03:32
Y lo único que las moléculas están cambiando, porque hay moléculas de NO2 que están pasando a ser N2O4,
00:03:36
y en la inversa, moléculas de N2O4 que se están descomponiendo en dos moléculas de NO2.
00:03:43
Pero como no hacen al mismo ritmo, las concentraciones no varían.
00:03:49
Entonces, eso es lo que denominamos un equilibrio químico.
00:03:52
Siempre lo vamos a escribir con una doble flecha, una flecha única que tenemos cuando la reacción transcurre hasta que todos los reactivos se apoten.
00:03:56
Por ejemplo, aquí tenemos una tablita en la que podéis ver cómo, en función del tiempo, empezamos a mirar concentraciones de la reacción anterior, de la que teníamos aquí.
00:04:09
Esta reacción, pues tenemos el tetraóxido, que evidentemente, como es un reactivo, según va aumentando el tiempo, aquí tenemos al inicio, a los 20 segundos, 40, 60, 80 segundos,
00:04:20
pues va disminuyendo, pasa de 0,1 moles al diopolitro, 0,0,7, 0,0,5, 0,0,4, aquí veis que ya se queda constante a partir del minuto, a partir de los 60 segundos.
00:04:33
Mientras que el producto inicialmente no existe, y según va reaccionando, pues se va formando un producto, fijaros que se forma al doble de ritmo que éste se descompone.
00:04:44
¿Por qué? Pues porque la escritometría es que por cada mol de tetraóxido que se descompone, se forman dos moles de dióxido.
00:04:56
Entonces, fijaros un poco en lo que hemos dicho, la concentración de tetraóxido disminuye en la tabla, el dióxido aumenta y llega un momento en el cual,
00:05:04
tanto uno como otro, sus concentraciones entre los segundos 60 y 80 ya están constantes, es decir, en este momento ha alcanzado el equilibrio.
00:05:14
Y esto que tenemos aquí serían lo que llamamos las concentraciones de equilibrio de esa reacción.
00:05:22
Vamos a ver ahora cómo relacionamos las concentraciones con lo que vamos a llamar la constante de equilibrio.
00:05:27
Entonces, pues para una reacción de este tipo a coeficientes espequiométricos o como en minúscula, las especies en mayúscula,
00:05:35
definimos la constante de equilibrio como la concentración de los productos elevado a sus coeficientes espequiométricos.
00:05:45
En este caso sí es a los coeficientes espequiométricos, no es como en cinética. En cinética elevamos alfa, beta, gamma y tenemos que calcularlos.
00:05:54
En este caso son los coeficientes espequiométricos y divido entre las concentraciones molares de los reactivos elevados a sus exponentes.
00:06:03
Entonces aquí ya teníamos una constante de equilibrio en la que lo que tenemos son las concentraciones en las que la reacción alcanza el equilibrio.
00:06:16
Esta constante varía con la temperatura, entonces siempre es lo que hemos aquí puesto, la constante de equilibrio varía con la temperatura.
00:06:25
Entonces es un dato que siempre nos lo van a dar junto con la temperatura a la que ocurre.
00:06:32
Y también su valor va a depender de la forma en que ajustemos la reacción, porque está elevado a los coeficientes espequiométricos.
00:06:38
Por ejemplo las reacciones que tenemos aquí, fijaros que si yo tengo la reacción del amoníaco ajustada de esta manera,
00:06:50
pues tendremos unos exponentes de esta otra, otros exponentes de esta otra.
00:06:57
Vamos a verlo en el cuadernito mejor, para explicarlo con un punto más de detalle.
00:07:01
Estábamos diciendo que tenemos la reacción de formación del amoníaco.
00:07:09
Como estamos viendo, equilibrio...
00:07:13
Esto no me gusta muy clavito para escribir esto.
00:07:15
Tenemos la reacción, bueno, vamos a poner aquí equilibrio.
00:07:24
Y empezamos por hablar de K sub c, que es la constante de equilibrio.
00:07:33
Decimos que K sub c depende de cómo ajustemos la reacción, vamos a verlo en un caso práctico.
00:07:40
Tenemos la síntesis del amoníaco, que es una reacción bidireccional.
00:07:44
Bueno, aquí ya si ajustamos de la forma típica, que es con un 2 aquí...
00:07:56
Y aquí con un 3, pues ya tendría ajustada esta reacción.
00:08:08
Entonces, la constante de equilibrio, tal y como habíamos dicho, es la concentración...
00:08:13
Bueno, vamos a poner aquí, porque aquí este tema va a ser muy importante,
00:08:19
tener en cuenta los estados, ya veremos más adelante por qué.
00:08:22
La concentración de equilibrio es la del producto, es decir, en este caso es la del amoníaco,
00:08:28
elevado a su coeficiente estequiométrico.
00:08:35
¿Vale? Y esto dividido entre las concentraciones de los reactivos,
00:08:38
en el caso del hidrógeno como coeficiente sub 1 no ponemos nada,
00:08:45
multiplicado por la concentración del hidrógeno elevado al cubo.
00:08:49
Vale, en este caso hemos obtenido esta constante de equilibrio.
00:08:58
Si yo lo ajusto de otra manera, por ejemplo, imaginad que pongo un medio,
00:09:01
nitrógeno, gas, más tres medios, hidrógeno, gas...
00:09:10
Y me quedaría el amoníaco con el coeficiente estequiométrico 1.
00:09:21
Vamos a llamar a esta constante de equilibrio 1 para diferenciarla de la otra,
00:09:28
que es la constante de equilibrio 2.
00:09:31
Lo voy a llamar así, simplemente por diferenciarlas y poder ver qué relación tenemos entre ellas.
00:09:33
Y aquí entonces tenemos el producto, que es el amoníaco,
00:09:38
pero elevado a 1,
00:09:43
porque es el coeficiente estequiométrico.
00:09:45
Ahora, dividido entre N2 elevado a un medio y el hidrógeno elevado a tres medios.
00:09:47
¿Vale? Pues aquí fijaros que entre una y otra,
00:10:02
la relación entre la primera constante, ajustada de esta manera,
00:10:05
y la segunda constante ajustada de esta manera,
00:10:08
es que esta segunda constante es la raíz cuadrada de la primera,
00:10:10
es decir, K sub c2 es igual a, vamos a ponerlo así para verlo mejor,
00:10:13
K sub c1 elevado a un medio.
00:10:19
Es decir, si yo la reacción la multiplico por un factor,
00:10:22
lo que hago con las constantes es que lo elevo a ese factor.
00:10:26
Vamos a hacerlo ahora para que mejor sea más fácil ver, multiplicándolo por 2.
00:10:29
Si yo hago 2, la raíz cuadrada de la primera,
00:10:32
vamos a hacerlo ahora para que mejor sea más fácil ver, multiplicándolo por 2.
00:10:36
Si yo hago 2, N2, gas,
00:10:39
aquí como multiplico por 2, pues sería 6,
00:10:45
H2 gas
00:10:49
y 4 de amoníaco.
00:10:54
¿Vale? Pues esta constante equilibrio, que la vamos a llamar K sub c3,
00:11:00
pues sería la del amoníaco elevado a 4
00:11:05
entre la del nitrógeno al cuadrado
00:11:13
y la del hidrógeno a la sexta.
00:11:21
Fijaros que esta constante ahora mismo es el cuadrado de la primera.
00:11:27
Multiplicado por 2, pues por lo que multiplico se eleva.
00:11:31
Entonces, K sub c1 es K sub c3,
00:11:34
pero K sub c3 es la primera elevada al cuadrado.
00:11:41
Y casi mejor, antes de pasar a otra cosa,
00:11:47
es decir, si yo tengo una reacción de este tipo,
00:11:51
con una constante de equilibrio K sub c,
00:12:01
si yo esta reacción la multiplico por 2, todos sus coeficientes,
00:12:07
A, A más B, B,
00:12:12
C, C,
00:12:18
más B, B,
00:12:20
lo que voy a tener es que la constante que tiene esta segunda reacción, K sub c2,
00:12:22
pues es 2 veces K sub c1,
00:12:29
no, perdón, K sub c1 al cuadrado.
00:12:32
Vale, siempre el factor por el que multiplico es la potencia a la que lo elevamos, K sub c1.
00:12:36
Y luego, un último caso, que sería si yo invierto la reacción,
00:12:43
por ejemplo, yo esta reacción inicial que tenemos aquí, ahora la voy a invertir,
00:12:48
le voy a escribir, al contrario, yo tengo 2 de amoníaco,
00:12:52
vamos a ver, más que como si fuera la síntesis del amoníaco,
00:12:58
como si fuera la descomposición, pero me da igual, porque como es bidireccional,
00:13:01
y está ocurriendo en los sentidos, da un poco igual.
00:13:05
Lo típico es escribirla como lo hemos escrito en la parte de arriba.
00:13:07
Entonces tenemos N2,
00:13:12
esto es de hidrógeno, todo gas.
00:13:16
Vale, pues la constante de esta reacción, que es la inversa de arriba, vamos a llamarla K sub c4,
00:13:23
pues serán los productos, que en este caso son el nitrógeno,
00:13:31
por el hidrógeno al cubo,
00:13:37
entre el amoníaco al cuadrado.
00:13:44
Y si miráis la relación entre esta y esta,
00:13:48
básicamente la K sub c4 es la inversa de K sub c1 aquí.
00:13:53
K sub c4 es igual a K sub c1 elevado a menos 1, esto es la inversa.
00:13:57
¿Lo veis? Entonces, siempre que multiplicamos una ecuación química por un número,
00:14:04
pues cambiamos el equilibrio químico elevando el equilibrio al número por el que hemos multiplicado la reacción.
00:14:11
Y si lo que hacemos es invertir la reacción, pues lo que obtenemos es la constante que es la inversa de la primera parte.
00:14:19
Bueno, seguimos con la parte de teoría.
00:14:31
Más cosas que pueden ocurrir, esto de hecho lo utilizaremos para algún ejercicio.
00:14:33
Otra cosa importante, si en la reacción intervienen sólidos o líquidos puros,
00:14:37
la concentración es constante, no varía, y entonces se puede sacar de la constante de equilibrio,
00:14:43
porque al ser una constante no tiene sentido que aparezca ahí.
00:14:51
Entonces, por ejemplo, la descomposición del carbonato, una descomposición térmica del carbonato de calcio,
00:14:53
va a formar óxido de cal y dióxido de carbono.
00:14:58
Esta reacción, así estaría ajustada, todo con coeficientes 1,
00:15:00
pues tendríamos que el constante de equilibrio sea el óxido de calcio, concentración de óxido de calcio,
00:15:05
multiplicado por concentración de dióxido de carbono, que está en estado gaseoso,
00:15:11
dividido entre la concentración del carbonato de calcio.
00:15:17
Si os fijáis, tanto el dióxido de carbono como la concentración de dióxido de carbono
00:15:21
están en estado solido.
00:15:26
Si os fijáis, tanto el carbonato como el óxido de calcio están en estado sólido.
00:15:28
Aunque están en estado sólido, su concentración no varía.
00:15:34
Concentración, pues tiene sentido hablar de concentración si tenemos una sustancia en disolución acuosa
00:15:37
o una sustancia en estado gaseoso.
00:15:44
Entonces, toda la parte, digamos, sólida la podemos sacar de la ecuación del equilibrio.
00:15:46
Y nos quedaría la posibilidad de expresar el equilibrio solamente con K sub c igual a la concentración del CO2.
00:15:52
Esto siempre tenemos que fijarnos, porque cuando hacemos la constante de equilibrio, si es algo de este tipo,
00:16:00
le igualamos a la concentración del dióxido de carbono.
00:16:05
Bueno, esto es lo otro que hemos hecho.
00:16:09
Si se invierte una reacción, pues es la inversa.
00:16:11
Se multiplica por un número n.
00:16:14
La constante de equilibrio nueva es la antigua elevada a la enésima potencia.
00:16:16
Y si se suman dos ecuaciones, para dar una tercera, por ejemplo algo que hacemos típicamente en una ley de Hess,
00:16:21
si tenemos un ejercicio que nos combina la ley de Hess y el equilibrio químico,
00:16:29
pues habría que tener en cuenta que las concentraciones se multiplican.
00:16:32
Si yo a una reacción le sumo otra, pues las concentraciones se multiplican.
00:16:37
Y haremos ejercicios en los que trabajemos con esto.
00:16:43
Una puntualización importante.
00:16:48
A ver, con las constantes de equilibrio, en la comunidad científica hay un poco de discrepancia entre si son dimensionales o adimensionales.
00:16:50
¿Qué significa que sean dimensionales o adimensionales?
00:16:59
Pues que tengan unidades o que no tengan unidades.
00:17:02
De verdad, todo esto viene porque aquí la concentración de equilibrio es una aproximación macroscópica.
00:17:05
Pero si vamos desde un punto de vista termodinámico, van a surgir las concentraciones de equilibrio sin dimensiones, sin unidades.
00:17:13
Aquí en este caso, por ejemplo, esta aquí es moles por litro al cuadrado entre moles por litro y moles por litro.
00:17:23
No tiene unidades, pero por ejemplo este otro caso, según hemos visto hasta ahora, sí tendría.
00:17:29
Bueno, pues tened en cuenta, en estos apuntes aparecen con dimensiones,
00:17:34
pero en EBAU, en la Universidad de Madrid, las constantes de equilibrio se consideran sin unidades.
00:17:37
Cuidado con esto, ¿vale?
00:17:43
Si quisiéramos tener una constante de equilibrio, terminaríamos poniendo solamente un número, sin más unidades ni ninguna información.
00:17:45
¿Vale?
00:17:56
Lo que hemos visto ahora es la constante de equilibrio, porque en la constante de equilibrio, digamos, están las distintas sustancias,
00:18:03
pero las concentraciones que aparecen aquí son las concentraciones de equilibrio.
00:18:13
Pero yo puedo tener un estado diferente al de equilibrio en una reacción, cuando está evolucionando,
00:18:17
en la que pueda poner una ecuación similar a la de la constante de equilibrio.
00:18:21
Veis que para esta ecuación, si las concentraciones que tengo aquí fueran las concentraciones de equilibrio, esto sería caso C.
00:18:26
Pero lo ponemos con un subíndice cero como diciendo que son las concentraciones iniciales,
00:18:33
o de un momento concreto en el que yo he parado la reacción y quiero saber a partir de ahí
00:18:37
si va a evolucionar hacia la derecha o hacia la izquierda para alcanzar el equilibrio.
00:18:42
¿Vale? Pues ¿cómo podemos ver esto?
00:18:47
Pues primero, este cálculo que hacemos aquí, lo que vamos a hacer es compararlo con la constante de equilibrio.
00:18:48
A esto le llamamos el cociente de la reacción.
00:19:01
Entonces comparamos el cociente de la reacción con la constante de equilibrio.
00:19:03
Si el cociente de la reacción nos da que es igual que la constante de equilibrio, pues estamos en equilibrio.
00:19:07
Ya no va a evolucionar hacia ningún sitio, sino que se va a quedar en el punto en el que está.
00:19:14
Si el cociente de reacción es menor que la constante de equilibrio, pues ¿qué ocurre?
00:19:20
Para que evolucione, si es menor, esto tiene que crecer.
00:19:26
La constante de equilibrio tiene que crecer.
00:19:29
¿Y cómo crece? Aumentando el numerador y disminuyendo el denominador.
00:19:31
¿Eso qué significa? Que se consumen los reactivos para producir productos.
00:19:36
Hasta que lleguemos a concentraciones de equilibrio.
00:19:41
Es decir, la reacción cuando el cociente de la reacción sea menor que la constante de equilibrio, va a evolucionar hacia la derecha.
00:19:44
Inversamente, si el cociente de la reacción es mayor que la constante de equilibrio,
00:19:51
pues lo que va a ocurrir es que queremos que disminuya el numerador y que aumente el denominador.
00:19:58
¿Esto cómo ocurre? Pues gastándose productos y produciéndose reactivos.
00:20:02
Es decir, en este caso, la reacción va a evolucionar hacia la izquierda.
00:20:06
Vamos a ver un ejemplo para que no nos terminemos haciendo tanto libro.
00:20:14
La relación hidrógeno-hidrógeno para dar yoduro de hidrógeno tiene una constante de 50,2.
00:20:22
Vamos a escribirla en nuestro cuadernito.
00:20:29
Hidrógeno, gas, más yodo para dar yoduro de hidrógeno.
00:20:31
Yodo está en estado de gas como puede sublimar.
00:20:44
Está viendo que está a 445 grados.
00:20:50
Si es estado de gas, es diatómico.
00:20:52
Tenedlo en cuenta siempre.
00:20:55
Está dentro de los gases que no son gases nobles.
00:20:57
Aquí a esa temperatura ya ha sublimado.
00:20:58
Y el yoduro hidrógeno también es gas a esa temperatura.
00:21:01
Y esto para estar equilibrado te lo pone un 2.
00:21:04
Me dice que son 50,2 a 455 grados Celsius.
00:21:10
Se produce 50,2 a 450 grados Celsius.
00:21:16
Volumen 3,5 litros.
00:21:29
En un recipiente con un volumen.
00:21:32
Y previamente se ha revisado el vacío, o sea que solamente va a tener los gases que introduzcamos aquí.
00:21:48
Y tenemos 0,30 gramos de hidrógeno.
00:21:53
Vamos a ponerlo aquí.
00:21:56
0,30 gramos de hidrógeno.
00:21:58
38,07 gramos de yodo.
00:22:02
38,07 gramos de yodo.
00:22:05
Y de yoduro, 19,18 gramos de yoduro.
00:22:10
19,18 gramos de yoduro.
00:22:16
Además me dan como datos la masa atómica de hidrógeno, que es una U, y la del yodo, que es 126,9 U.
00:22:22
Vamos a apuntar la del yodo por la del hidrógeno.
00:22:31
Ya lo sabemos.
00:22:34
126,9 U.
00:22:36
Y me piden que calcule las concentraciones en el equilibrio.
00:22:42
Me han dado la cosa antes del equilibrio.
00:22:44
Pues vamos a ello.
00:22:47
A ver, lo primero que vamos a calcular es el número de moles que tenemos aquí.
00:22:49
De cada uno de estas partes.
00:22:54
Entonces, de hidrógeno, el número de moles de hidrógeno va a ser 0,30 gramos entre 1 gramo partido por mole.
00:22:59
Y esto me da 0,3 moles de hidrógeno.
00:23:11
Para el yodo...
00:23:18
No, perdona, que es entre 2, porque es entre 2.
00:23:25
Porque es entre 2.
00:23:28
Estoy todavía un poco...
00:23:32
Un poco así, de aquella manera.
00:23:37
Vale, del yodo...
00:23:41
Pues tenemos 38,07.
00:23:44
Y la masa molar del yodo son 126,9 por 2.
00:23:50
126,9 por 2. Vamos a hacerlo aquí, antes de la masa molar del yodo.
00:23:57
Es 2 por 126,9.
00:24:05
Y esto si sacamos la calculadora.
00:24:10
2 por 126,9.
00:24:14
Esto nos da 253,8 gramos por mole.
00:24:19
253,8. Esto lo agarramos y esto lo agarramos por mole.
00:24:28
Vale, pues para no meter otra vez el número lo divido entre 38,07 y luego lo hago la inversión.
00:24:36
La inversión se elevará a menos 1.
00:24:48
Y nos quedaría también 0,15.
00:24:51
0,15 moles.
00:24:54
Y por último, el número de moles del yodo duro de hidrógeno.
00:24:57
Que son 126,9 más 1 mole de hidrógeno.
00:25:02
Pues 127,9 y tengo 19,18.
00:25:06
19,18 gramos entre 127,9.
00:25:11
Gramos por mole.
00:25:19
Y esto me da 0,15 moles también.
00:25:24
Vale, pues ya tendríamos aquí los moles de cada una de las sustancias.
00:25:30
Para sacar la concentración de su molaridad son moles partido por litros, que están todos en un recipiente de 3,5 litros.
00:25:35
Por tanto, la concentración de hidrógeno va a ser 0,15 entre 3,5.
00:25:42
Pero va a ser la de todos igual.
00:25:51
O sea, va a ser igual que la concentración de yodo, porque todos nos han salido que tenemos 0,15 moles.
00:25:53
Igual que la concentración de yodo duro de hidrógeno.
00:25:59
Sería esto de aquí.
00:26:03
Está con la baja en indicado porque me va a interesar hacer el cálculo con la concentración en equilibrio.
00:26:04
Lo ponemos para ponerlo en la tabla.
00:26:11
No, vamos a hacer la tabla con moles, que va a ser más fácil.
00:26:15
Vale, entonces tenemos...
00:26:18
Ahora quiero poner número de moles en el inicio, pongo 0.
00:26:20
Lo que ha reaccionado, cuánto ha reaccionado.
00:26:24
Y número de moles en el equilibrio.
00:26:30
Y luego ya dividimos entre 3,5 para equilibrar.
00:26:33
Y ahora esto lo tenemos de H2, de I2 y de yodo duro de hidrógeno.
00:26:36
Vale, pues de H2, números en todos al inicio y tenemos 0,15.
00:26:42
Este tipo de tablas las vamos a hacer siempre en los ejercicios de equilibrio.
00:26:49
Es importante que lo entendáis bien.
00:26:54
En lugar de poner las masas, pongo los moles que tenemos al inicio de la reacción.
00:26:56
¿Cuánto va a reaccionar? Pues miramos la proporción estequiométrica.
00:26:59
De aquí reacciona un mol, de aquí un mol, y se forman dos moles de este.
00:27:03
Entonces, como no sabemos qué cantidades, ponemos X.
00:27:07
Aquí reacciona X también, pero este como la proporción estequiométrica es doble,
00:27:11
pues será 2X lo que recibe, digamos, lo que se forma.
00:27:15
Entonces al final del equilibrio, ¿cuánto tendremos? Pues 0,15 menos X.
00:27:21
De yodo, 0,15 menos X.
00:27:27
Y de este de aquí, como se ha formado y este ha ganado producto, será 0,15 más 2X, que no será menos X.
00:27:32
Y ahora todos estos valores los pasamos a la constante de equilibrio que nos lo han dado aquí.
00:27:40
Entonces escribimos la constante de equilibrio.
00:27:45
Escribimos la constante de equilibrio.
00:27:46
Perdonad, entonces, porque la K sub C de la que nos dan el dato arriba,
00:27:49
en realidad es la concentración del producto HI al cuadrado entre la concentración de hidrógeno y la concentración de yodo.
00:27:53
Bueno, pues vamos a escribir las concentraciones primero, que va a ser la del hidrógeno.
00:28:09
Va a ser igual que la del yodo.
00:28:16
Y va a ser la del equilibrio.
00:28:22
Aquí acaso para distinguir aquí ponemos esta sub cero porque eran las iniciales.
00:28:26
Y en el equilibrio, tanto una como otra, si lo veis aquí, la parte de abajo es 0,15 menos X.
00:28:30
Y la del yoduro de hidrógeno, sin embargo, es 0,15 más 2X.
00:28:38
0,15 más 2X.
00:29:02
Y ahora ya lo ponemos todo en la ecuación del equilibrio que sabemos que eso vale 50,2.
00:29:04
Entonces ponemos 50,2 es igual a la del yoduro que es 0,15 más 2X al cuadrado.
00:29:11
Y esta otra de aquí es 0,15 menos X.
00:29:25
Pues 0,15 menos X es 0,15 menos X al cuadrado.
00:29:30
Ahora tengo un cuadrado arriba y abajo.
00:29:37
Sabéis que esto es como si tuviera toda la fracción elevada al cuadrado.
00:29:39
Lo que puedo hacer simplemente es sacar.
00:29:42
Bueno, lo vamos a hacer en un paso aquí mejor.
00:29:45
Directamente puedo eliminar los cuadrados.
00:29:47
Vamos a ponerlo en este grupo.
00:29:50
Elimino los cuadrados y para ello aquí tendría que poner una raíz.
00:29:52
La raíz de 50,2.
00:29:57
Vamos a ver cuál es la raíz de 50,2.
00:29:59
7,08.
00:30:13
Lo voy a guardar en una memoria para no perder precisión.
00:30:15
Entonces le doy shift y esto de storage, de guardar, en la memoria A.
00:30:17
Ya veis que ya las dos he guardado en la memoria A.
00:30:24
Y ahora lo que hacemos es el resultado de 7,09 redondeando.
00:30:27
7,09 lo multiplico por 0,15 menos X.
00:30:32
Esto va a ser igual a 0,15 más 2X.
00:30:47
Vamos a ir operando cosas.
00:30:52
7,09 que lo teníamos en la memoria A.
00:30:56
Bueno, pues realmente no.
00:31:00
Por 0,15.
00:31:03
Esto nos da 1,06.
00:31:09
Vamos a meter esto también en la memoria B, por ejemplo.
00:31:14
Menos 7,09 que era la memoria A, recordáis.
00:31:24
Por X.
00:31:29
Y esto es igual a 0,15 más 2X.
00:31:31
Si paso todas las X a la derecha y todo esto a la izquierda, me queda 1,06.
00:31:37
Que era la memoria A.
00:31:44
No, la memoria B, perdón.
00:31:47
Menos 0,15 que pasa a este lado.
00:31:53
Menos 0,15.
00:31:55
Y esto es 0,91.
00:32:00
0,91.
00:32:03
Y en el otro lado tengo 7,09 más 2.
00:32:08
Pues 9,09X.
00:32:12
Vamos a poner la memoria A.
00:32:17
0,91 le ponemos memoria C.
00:32:22
A ver, esto es un poco por no perder precisión, si os liáis.
00:32:25
Tampoco hay falta que...
00:32:30
Bueno, es igual.
00:32:33
Ahí lo tengo, 0,91.
00:32:35
Memoria Y, C.
00:32:37
Ahora sí.
00:32:41
Y 9,09 que era la memoria A.
00:32:42
Más 2.
00:32:47
Que es 9,085.
00:32:51
Lo metemos en la memoria D.
00:32:54
Y es el último que metemos en la memoria.
00:32:56
Eso si lo estáis haciendo en un escáner, lo podéis hacer en lápiz y luego lo borráis.
00:33:00
Poniendo el nombre clarizado.
00:33:05
Si no queréis perder precisión, tampoco hace falta que se complique demasiado.
00:33:06
Vale, entonces teníamos 0,91 que era...
00:33:10
Si no recuerdo mal era la memoria C, ¿verdad?
00:33:14
Memoria C, comprobamos que no lo he apuntado.
00:33:17
Sí, 0,91.
00:33:20
Entre la memoria D, que es...
00:33:22
Alfa D, ¿vale?
00:33:27
Me quedaría 0,8.
00:33:29
Alfa D, ¿vale?
00:33:32
Me quedaría 0,1, 0,10.
00:33:34
Vale, entonces X es igual a 0,10 moles.
00:33:37
¿Vale?
00:33:45
Bueno, las concentraciones.
00:33:48
Lo que decía que de aquí no las he metido.
00:33:50
Habría que dividir entre 3,5.
00:33:53
Entre 3,5 y luego como está cuadrado en cuadrado se nos va, por eso aquí no las he metido.
00:33:55
Pero si no está cuadrado arriba y cuadrado abajo, habría que meter los volúmenes directamente.
00:34:00
Bueno, pues si tenemos que X es cero guayes, pues ahora ya podemos calcular directamente las concentraciones.
00:34:07
El último que me piden es la concentración del hidrógeno.
00:34:12
Es igual que la concentración del yodo.
00:34:16
¿Vale? Y esto es 0,15.
00:34:21
Menos X.
00:34:27
Entre 3,5.
00:34:30
¿Vale? Y como X ya lo tenemos calculado que es 0,10.
00:34:36
Pues borramos y hacemos menos 0,10 directamente.
00:34:40
Menos 0,10.
00:34:44
Y esto es 0,15 menos 0,10 es 0,05.
00:34:46
Entre 3,5.
00:34:52
¿Vale?
00:34:55
0,05 entre 3,5.
00:35:00
Y esto me da 0,014.
00:35:06
Estos son 0,014.
00:35:11
Aunque la constante no tiene unidades, las concentraciones sí.
00:35:17
Son 0,014 moles partido por litro.
00:35:22
¿Vale?
00:35:25
Y aquí tenemos ya una de las partes que nos preguntan.
00:35:27
Y la otra que nos preguntan es la concentración del yoduro.
00:35:31
La concentración del yoduro.
00:35:35
Pues será 0,15 más 2X.
00:35:37
Entre 3,5.
00:35:45
Y 2X es 2 por 0,1 que es 0,2.
00:35:49
2 por 0,1 es 0,2.
00:35:55
0,2 más 0,15 son 0,35.
00:35:59
Entre 3,5.
00:36:03
Aquí no haría falta ni...
00:36:10
Porque esto nos daría 0,1, ¿no?
00:36:13
Vamos, según os guiáis, hacéis 0,35 entre 3,5.
00:36:15
0,35 entre 3,5.
00:36:21
Y esto me da un décimo que es 0,1.
00:36:26
0,1 moles partido por litro.
00:36:29
¿Vale? Pues aquí sería un primer ejemplo de cómo aplicamos la constante de equilibrio para una reacción química.
00:36:35
¿Vale? Lo que tenemos aquí. Vamos a ver si nos sale lo mismo que daba aquí en el ejemplo, que no me haya volumpeado.
00:36:43
Vale. 0,014 y 0,1.
00:36:52
Ah, sí. Lo mismo que nos sale.
00:36:55
Bueno, pues con esto lo dejaríamos por hoy, que ya lo habéis tenido para un rato.
00:36:58
Mañana seguiremos con el tema de equilibrio químico, ¿de acuerdo?
00:37:02
Venga, pues que tengáis buen día.
00:37:05
- Idioma/s:
- Autor/es:
- Segismundo Peláez Lirola
- Subido por:
- Segismundo P.
- Licencia:
- Reconocimiento - No comercial - Compartir igual
- Visualizaciones:
- 121
- Fecha:
- 6 de diciembre de 2023 - 11:56
- Visibilidad:
- Público
- Centro:
- IES GUSTAVO ADOLFO BÉCQUER
- Duración:
- 37′ 08″
- Relación de aspecto:
- 1.78:1
- Resolución:
- 1920x1080 píxeles
- Tamaño:
- 119.87 MBytes