Saltar navegación

Activa JavaScript para disfrutar de los vídeos de la Mediateca.

Principio de superposición - Contenido educativo

Ajuste de pantalla

El ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:

Subido el 22 de enero de 2021 por Àngel Manuel G.

570 visualizaciones

En este vídeo explicamos el principio de superposición: cómo calcular el campo o el potencial debido a varias masas/cargas en un punto.

Descargar la transcripción

en este vídeo vamos a hablar sobre el principio de superposición el principio 00:00:04
de superposición lo que nos dice es que si tenemos varias magnitudes que cumplen 00:00:09
este efecto sobre el mismo punto el efecto global va a ser la suma de ellas 00:00:14
vamos a explicarlo más detalladamente las 00:00:19
magnitudes que van a cumplir lo van a ser la fuerza 00:00:25
gravitatoria y la fuerza electrostática ambas, el campo gravitatorio o la intensidad de campo 00:00:30
gravitatorio y la intensidad de campo eléctrico y también la energía potencial y el potencial 00:00:37
tanto gravitatorios como eléctricos. Vamos a insistir en ello, tanto gravitatorio como eléctrico. 00:00:45
electroestático si queréis, electroestático, ¿vale? ¿esto qué significa? imaginemos que tenemos un sistema como el siguiente, tenemos un eje de coordenadas, este es el eje X y el eje Y y sobre el eje X colocamos, sobre el eje X no, sobre este sistema colocamos una carga positiva, por ejemplo ahí y colocamos una carga negativa, 00:01:01
por ejemplo aquí. Yo estoy interesado en el efecto que tienen estas cargas sobre este punto de aquí 00:01:37
que es el origen de coordenadas. Yo sé que el campo electrostático que me va a generar cada 00:01:46
una de ellas viene dado por una ecuación que es esta ecuación del campo que es la constante k por 00:01:52
la carga en cuestión dividido entre la distancia al cuadrado y por r gorrito. No vamos a hacer los 00:02:02
números en este problema simplemente lo vamos a hacer de forma gráfica para que se entienda 00:02:11
y vamos a hacerlo de la siguiente manera. Este campo para la carga 1 que va a ser esta de aquí 00:02:16
pues va a ser este valor de k, este valor de q que va a ser una carga positiva porque hay un signo más, 00:02:23
la distancia que será esta distancia de aquí, esta distancia de aquí al cuadrado 00:02:31
y este vector unitario que recordamos que es un vector que va desde la carga hacia el punto 00:02:37
con lo cual va a ser un número positivo en esta dirección y sentido 00:02:43
por lo tanto el campo que vamos a observar es este de aquí 00:02:49
y este lo voy a llamar campo de la carga 1 00:02:53
con la carga negativa que le vamos a llamar carga 2 00:02:58
podemos observar que si aplicamos la misma ecuación 00:03:03
la diferencia ahora va a ser que esta Q va a ser negativa 00:03:09
por tanto va a ir en sentido contrario de este vector r gorrito 00:03:13
ahora la distancia es esta distancia de aquí 00:03:17
y el vector r gorrito recordamos va desde la carga hacia el punto 00:03:21
es decir como este, este es r gorrito 00:03:27
por lo tanto si el campo tendría que alejarse de la carga como la carga va a ser negativa la 00:03:31
intensidad de campo aquí va a ser hacia acá no conocemos cuál es el módulo de estas flechas que 00:03:37
estoy dibujando de estos vectores porque no sabemos si esta carga es mayor que la otra y demás sí que 00:03:46
vemos que como esta distancia es mayor y esta flecha más larga probablemente ésta sea mayor 00:03:52
pero esa información no es importante en este momento ahora mismo yo estoy viendo en rojo el 00:03:55
efecto que hace la carga positiva y en verde el efecto que hace la carga negativa sin embargo yo 00:04:01
no quiero el efecto de la carga positiva y el de la negativa yo quiero el efecto global de todas 00:04:08
las cargas de la positiva y de la negativa y lo que me dice el principio de superposición es que 00:04:15
yo puedo sumar los efectos individuales de cada una de estas cargas y ese será el efecto global 00:04:20
sobre este punto en el origen es decir si sumo ahora los vectores e1 y e2 que para sumarlo 00:04:28
recordad movemos el e1 al final del e2 y hacemos un vector que vaya desde el origen del primero 00:04:36
hasta el final del segundo esto es el campo total que vamos a tener en ese punto o del origen 00:04:44
ocurriría lo mismo si estuviésemos calculando el potencial electrostático recordamos que el 00:04:58
potencial electrostático es k por la carga entre el radio podríamos calcular un potencial debido 00:05:04
a la carga 1 un potencial debido a la carga 2 sumarlos y obtendríamos el potencial en el origen 00:05:13
es importante recordar que tanto el campo electrostático como el campo 00:05:23
gravitatorio como la fuerza gravitatoria y electrostática son vectores cuando 00:05:28
apliquemos el principio de superposición deberemos sumar vectores vamos a poner 00:05:33
aquí suma vectorial mientras que el potencial en 00:05:38
este caso electrostático pero también el gravitatorio y ambas energías 00:05:47
potenciales son escalares, por lo tanto esto será una suma escalar, una suma escalar recordamos 00:05:50
que es una suma de números, ¿vale? Esto provoca un efecto bastante interesante y es el siguiente, 00:05:59
imaginemos que en lugar de esta disposición que tenemos aquí, tenemos una disposición 00:06:07
ligeramente distinta en la que tenemos, esto es el sistema de coordenadas, este es el eje 00:06:11
x, este es el eje y y colocamos una carga positiva en este punto, carga positiva y otra carga positiva 00:06:16
a la misma distancia pero a la derecha, ambas del mismo valor, esta es q y esta también es q y nos 00:06:31
preguntamos cuál es el efecto en el origen de coordenadas, esta distancia de aquí es una 00:06:42
distancia A y esta distancia de aquí es la misma distancia. ¿Cuál va a ser entonces este efecto en 00:06:49
el origen de coordenadas? Pues bien, si esta carga la pintamos de color rojo, en el origen de 00:06:55
coordenadas recordamos un vector de la carga hacia el punto, este será R gorrito y como este número 00:07:01
va a ser positivo tendremos un campo como este. Esa es la carga de color rojo. Sin embargo, la carga 00:07:07
de color verde repetimos que este número va a ser positivo pero ahora el vector r va a ir al revés 00:07:19
con lo cual esta flecha viene hacia atrás exactamente de la misma longitud porque fijémonos 00:07:25
que k es el mismo número la q es la misma porque son las mismas cargas y r en ambos casos vale a 00:07:35
Por lo tanto, este campo es igual que el otro, pero de sentido contrario. 00:07:44
En este caso, lo que vamos a observar es que el campo total en el origen es cero. 00:07:50
¿Por qué es cero? Porque este campo y este campo son idénticos y de sentidos opuestos. 00:08:04
Es como tirar hacia allá y tirar hacia allá, pero a la misma fuerza. 00:08:10
esto de aquí no significa, atención, que el potencial en el origen vaya a ser 0 00:08:13
de hecho no lo va a ser, ¿por qué? 00:08:23
porque fijaros que el potencial debido a esta carga, el potencial rojo 00:08:26
será K por Q dividido entre A 00:08:30
Y el potencial verde será K por Q dividido entre A. 00:08:37
No nos da igual si una está a la izquierda o a la derecha, tienen exactamente el mismo potencial con el mismo signo. 00:08:47
Por lo tanto, el potencial en el origen será la suma de estos dos potenciales, es decir, dos veces K por Q dividido entre A. 00:08:55
Y así es como aplicaremos el principio de superposición. 00:09:08
Valoración:
  • 1
  • 2
  • 3
  • 4
  • 5
Eres el primero. Inicia sesión para valorar el vídeo.
Idioma/s:
es
Autor/es:
Àngel M. Gómez Sicilia
Subido por:
Àngel Manuel G.
Licencia:
Reconocimiento - No comercial - Compartir igual
Visualizaciones:
570
Fecha:
22 de enero de 2021 - 19:40
Visibilidad:
Público
Duración:
09′ 17″
Relación de aspecto:
1.78:1
Resolución:
1920x1080 píxeles
Tamaño:
217.46 MBytes

Del mismo autor…

Ver más del mismo autor

Comentarios

Para publicar comentarios debes entrar con tu nombre de usuario de EducaMadrid.

Comentarios

Este vídeo todavía no tiene comentarios. Sé el primero en comentar.



EducaMadrid, Plataforma Educativa de la Comunidad de Madrid

Plataforma Educativa EducaMadrid