Activa JavaScript para disfrutar de los vídeos de la Mediateca.
8.PORCENTAJES II - Contenido educativo
Ajuste de pantallaEl ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:
Hola, bienvenidos a un nuevo tutorial.
00:00:18
Hoy hablaremos sobre cómo calcular una parte si conocemos el total y el porcentaje.
00:00:21
Pero primero vamos a recordar cómo se calculaba el porcentaje de un número con este ejemplo.
00:00:29
El 24% de 180.
00:00:35
Nosotros conocemos el total, que es 180, y queremos calcular el 24%.
00:00:38
Solamente hay que multiplicar por 0.24.
00:00:45
que es 24 partido por 100, y es el decimal asociado a ese porcentaje.
00:00:48
Obtenemos 43,2, que sería la parte.
00:00:53
Es decir, que para calcular el porcentaje de un número solamente tenemos que multiplicar por el decimal asociado al porcentaje.
00:00:57
Por ejemplo, si quiero calcular el 32%, tengo que multiplicar por 0,32.
00:01:06
Si quiero calcular el 127%, tengo que multiplicar por 1,27.
00:01:11
Pero lo que nos ocupa en este tutorial es justamente el proceso contrario.
00:01:18
Supongamos que sabemos que el 35% de X es 42.
00:01:24
La situación es la del siguiente gráfico.
00:01:31
Conocemos la parte que es 42 y desconocemos el total, que le llamamos X, si sabemos que 42 es el 35% de X.
00:01:34
tenemos que ir por lo tanto de la derecha a la izquierda
00:01:45
de la parte al total
00:01:51
nosotros sabemos que para ir del total a la parte
00:01:52
multiplicamos por 0.35
00:01:56
entonces por lógica para ir de la parte al total
00:01:59
haremos lo contrario
00:02:03
dividir entre 0.35
00:02:04
así que lo único que tenemos que hacer
00:02:06
para averiguar x es 42 entre 0.35
00:02:09
que nos da en este caso 120, es decir, para calcular el total dividimos por el decimal asociado al porcentaje, si es el 35% dividimos entre 0.35, si fuera el 48% dividimos entre 0.48.
00:02:14
Vamos a ver un par de ejemplos más
00:02:34
En el apartado A tenemos que el 112% de X es 40,32
00:02:37
La situación es la siguiente
00:02:45
Yo conozco la parte que es 40,32
00:02:47
Y desconozco el total que es X
00:02:50
Nos tenemos que ir de la parte al total
00:02:53
Dividimos entre 1,12
00:02:56
Que es 112 entre 100
00:02:59
Así que X será 40,32 entre 1,12.
00:03:01
Si hacemos esa división resulta 36, que es el total.
00:03:08
En el apartado B nos dicen el 45% de X es 540.
00:03:14
Conozco la parte, que es 540, desconozco el total, X, y sabemos que es el 45%.
00:03:20
Así que para ir de la derecha a la izquierda de la parte al total, divido entre 0.45.
00:03:27
X será 540 entre 0.45, o sea, 1200.
00:03:36
En el caso de que el porcentaje sea sencillo, el ejercicio se simplifica mucho.
00:03:44
Por ejemplo, en el apartado A, el 50% de X es 420.
00:03:50
Nosotros sabemos que el 50% de una cantidad es su mitad
00:03:56
Así que en este caso X será el doble de 420
00:04:00
840
00:04:05
En el apartado B nos dicen que el 25% de X es 34
00:04:06
Sabemos que el 25% de una cantidad es su cuarta parte
00:04:13
Así que X será 34 por 4
00:04:18
136
00:04:22
en el apartado C nos dicen que el 20% de X es 12
00:04:25
sabemos que el 20% de una cantidad es su quinta parte
00:04:31
así que solamente tenemos que multiplicar 12 por 5
00:04:35
que resulta 60
00:04:39
bien, hasta aquí el tutorial de hoy
00:04:41
espero que os haya servido de ayuda
00:04:44
y nos vemos en el siguiente
00:04:45
- Subido por:
- Ana O.
- Licencia:
- Reconocimiento - No comercial - Compartir igual
- Visualizaciones:
- 101
- Fecha:
- 1 de noviembre de 2020 - 22:32
- Visibilidad:
- Público
- Centro:
- IES GONZALO CHACÓN
- Duración:
- 04′ 59″
- Relación de aspecto:
- 4:3 Hasta 2009 fue el estándar utilizado en la televisión PAL; muchas pantallas de ordenador y televisores usan este estándar, erróneamente llamado cuadrado, cuando en la realidad es rectangular o wide.
- Resolución:
- 480x360 píxeles
- Tamaño:
- 5.61 MBytes