Saltar navegación

DT1.SD.U5.1 y 5.2a_ SD y el punto - Contenido educativo

Ajuste de pantalla

El ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:

Subido el 15 de diciembre de 2025 por Carmen O.

1 visualizaciones

Descargar la transcripción

Empezamos ya, esto sí que sería un poco lo equivalente a la segunda evaluación, 00:00:01
esto va a ser todo lo que se lleve el peso en la segunda evaluación. 00:00:06
Empezamos, siguiente bloque, es decir, ya hemos dejado de lado la geometría plana 00:00:10
hasta el año que viene, el segundo bachillerato, no volvemos a hacer nada de geometría plana. 00:00:15
Empezamos sistema dihédrico. 00:00:20
El sistema dihédrico, creo que de lo que tenemos de dibujo técnico, 00:00:23
es un poco lo que más tiene, por decirlo de una manera, arrastre. ¿Qué quiere decir 00:00:27
eso? Pues como os dije ya anteriormente, en las matemáticas, por ejemplo, cuando estamos 00:00:31
haciendo logaritmos, derivadas y demás, para saber hacer todo eso, o un sistema de ecuaciones 00:00:36
que es más simple, para hacer un sistema de ecuaciones yo previamente tengo que saber 00:00:41
sumar, restar, multiplicar, dividir. Pues un poco es lo mismo en el diédrico. Esto 00:00:45
es como la base y toda esta base te sirve para todo aquello que vais a ver en segundo 00:00:50
de bachillerato. Empezamos el sistema diédrico y empezamos a estudiar qué es el punto y 00:00:56
qué es la recta en sistema diédrico. El sistema diédrico es un método que nos permite 00:01:03
representar objetos que están situados en el espacio sobre una superficie plana mediante 00:01:09
proyección cilíndrica ortogonal. ¿Qué significa que la proyección es cilíndrica 00:01:15
ortogonal que es perpendicular, ortogonal significa perpendicular, sobre unos planos 00:01:20
de proyección. Los objetos a representar pueden ser puntos cuya nomenclatura es en 00:01:26
letras mayúsculas. ¿Qué quiere decir esto? Que tú cuando representes un punto, esto 00:01:35
ya lo hemos visto porque geometría plana es igual, hay que dejar de hablar. En geometría 00:01:39
plana es igual, significa que cuando tú empiezas a nombrar los puntos, los puntos se hacen 00:01:44
en mayúscula y empezamos siempre por el abecedario. A, B, C, D. Entonces, esto es así. Empiezo 00:01:50
en A, B, C, etc. Pero esto en sistema diérico es, tú tienes algo en el espacio, es decir, 00:01:57
lo tienes como en volumen, en 3D, y lo vas a representar plano, apoyado directamente 00:02:08
en el papel. Esto lo vais a entender ahora después. ¿Qué quiere decir eso? Que tú 00:02:14
representas en mayúscula cuando está el punto en el espacio, pero cuando tú lo representas 00:02:18
en las dos dimensiones, lo vas a llamar con la letra A y luego un 1 y un 2. Por ejemplo, 00:02:26
esto se traduce en lo siguiente. Tú luego lo vas a llamar arriba, que sería el plano 00:02:35
vertical de proyección, ahora vamos a ver qué es eso, lo vas a llamar A2 y abajo lo 00:02:41
vas a llamar A1, ¿vale? Ahora vamos a entender qué es eso. Las rectas, la nomenclatura tiene 00:02:47
que ser en letras minúsculas, es decir, yo no llamo a la recta, no le llamo R mayúscula, 00:02:55
sino que utilizo R, S, T, etc. Y lo mismo, la proyección de la recta en el plano vertical 00:02:59
lo voy a llamar R2 00:03:09
y a la proyección de la recta en el plano horizontal 00:03:12
lo vamos a llamar R1 00:03:19
eso es nomenclatura y siempre es así 00:03:21
y luego, nomenclatura en letras griegas 00:03:24
es lo que vamos a usar para cuando representemos planos 00:03:27
es decir, que tú al plano le vas a llamar 00:03:30
alfa, beta, gamma 00:03:32
pero lo mismo que ocurre con los puntos y con las rectas 00:03:35
cuando estás representando la traza 00:03:39
ahora ya no es proyección sino que es traza 00:03:41
cuando tú representas a la traza del plano en la vertical 00:03:44
será alfa 2 00:03:48
y cuando lo representas en la horizontal 00:03:50
será alfa 1 00:03:53
esto es nomenclatura de sistema diédrico en Madrid 00:03:55
hay otra nomenclatura, lo digo porque en los libros 00:04:01
Si alguno coge o consulta algo o se mete en internet para ver algún ejercicio de algo que no hayáis entendido en clase o lo que sea, vais a ver distintas nomenclaturas. 00:04:04
Vais a ver que nosotros en Madrid, esto sería Madrid, ¿vale? Por ejemplo, en el punto A2 y A1. Esto, Madrid. ¿Vale? La nomenclatura de Madrid. 00:04:14
pero va a haber 00:04:26
comunidades en las que a lo mejor tú veas 00:04:28
aquí A' 00:04:30
y A 00:04:32
o por ejemplo 00:04:35
y A' 00:04:39
o A sin nada 00:04:41
y A' 00:04:46
hay distintas nomenclaturas según la comunidad 00:04:46
hay algunas que también son así 00:04:49
lo digo porque lo vais a ver 00:04:51
en el libro, lo vais a ver representado de manera 00:04:53
diferente y tú aunque tú 00:04:55
veas que ves una A prima y una 00:04:57
segunda, tú tienes que decir, vale, para mí que estoy 00:04:59
en Madrid, esto es como si fuera la A segunda 00:05:01
mía. O la A, o sea, 00:05:03
la A2 mía. O la A1 00:05:06
mía. ¿Vale? Estos son 00:05:07
otras nomenclaturas en otras comunidades. 00:05:09
Otras 00:05:12
nomenclaturas. ¿Vale? 00:05:12
O sea, esto es importante 00:05:16
que lo sepáis porque tú cuando te veas a lo mejor 00:05:17
un vídeo de alguien de los que hay 00:05:20
en, pues en YouTube, 00:05:21
este Arturo Geometría y cosas así, 00:05:24
no sé, la verdad ahora mismo no recuerdo 00:05:25
que nomenclatura usa 00:05:28
pero que sepáis que puede ser eso 00:05:29
en Andalucía por ejemplo yo cuando 00:05:31
empecé era, si no recuerdo mal 00:05:33
esta, y me costó muchísimo 00:05:35
adaptarme a esto 00:05:38
muchísimo, porque yo en Andalucía me estudié 00:05:39
el dibujo técnico con esto, ¿vale? 00:05:41
bueno, pues vamos a ver lo siguiente 00:05:44
¿veis aquí? 00:05:45
voy a hacer un poquito de zoom 00:05:47
que tenemos 00:05:49
un triedro 00:05:50
a esto que vemos 00:05:53
aquí esto se le llama 00:05:55
triedro y si veis esto, aquí tenemos la figura 00:05:59
en este caso es un triángulo que está aquí como volando, está como flotando 00:06:03
vale, cuando tú observas esta figura desde aquí 00:06:07
arriba proyecta todos sus puntos en este plano de aquí 00:06:11
que es el plano horizontal, cuando tú observas 00:06:15
la figura desde este lado todos los puntos lo proyecta 00:06:19
en el plano vertical. Y cuando lo observamos desde este lado, tenemos la tercera proyección 00:06:23
o el plano de perfil. Esto es en volumen, pero claro, tú tienes que trabajar en plano. 00:06:29
¿Veis que se ve aquí como si hubiéramos dividido el espacio en cuatro partes? Esto 00:06:37
sería una parte, esto de aquí otra, esto de aquí otra y esto de aquí abajo otra. 00:06:41
¿Veis eso? Que te hemos dividido el espacio en cuatro partes. A esta primera parte se 00:06:46
le llama primer cuadrante, es decir, tú divides el espacio 00:06:53
en cuatro partes, cuatro cuadrantes, a esta parte de aquí le llamamos 00:06:56
primer cuadrante, a esta que está aquí detrás, segundo cuadrante 00:07:00
a la que está aquí debajo, tercer cuadrante, y a la que está aquí debajo 00:07:04
cuarto cuadrante, ¿vale? 00:07:08
Los cuadrantes, no sé si os dais cuenta, vienen aquí divididos 00:07:12
veis que pone PVS 00:07:16
El PVS significa plano de proyección vertical superior 00:07:20
Vamos a ir describiendo aquí las cosas 00:07:26
PVS 00:07:28
¿Se ve? No, vale, os quito zoom 00:07:29
PVS es plano vertical superior 00:07:32
Ya os digo que esto va a ser simplemente para que lo conozcáis 00:07:47
Pero que luego nosotros ni siquiera lo vamos a llamar así en ningún momento 00:07:52
Vale, y luego tenemos el plano horizontal, este veis que pone una A, anterior, plano, vertical, eso, perdón, ahora lo vuelvo, anterior, ¿vale? Plano horizontal, anterior, vamos a ver qué significa esto. 00:07:55
horizontal 00:08:19
mira, esto es porque tú tienes el plano vertical 00:08:22
engloba todo esto, como todo este rectángulo de aquí 00:08:27
¿se ve? todo esto es el plano vertical 00:08:31
¿vale? que es como si fuese una pared 00:08:34
y todo esto de aquí es el plano horizontal 00:08:38
que es como si fuera el suelo del espacio 00:08:42
entonces claro, lo divide en superior y en inferior porque esta parte es la parte 00:08:44
de arriba del plano vertical, la parte superior, y esta, ¿qué va a significar la I? Inferior. 00:08:50
¿Vale? Luego yo tengo aquí todo este plano horizontal, que es el suelo. Lo vamos a llamar 00:08:59
muchas veces, lo vamos a llamar suelo. Plano horizontal, y este es el anterior, esto significa 00:09:07
posterior. Vale. Y ahora vamos a ir viendo las distintas cosas, lo distinto que tenemos 00:09:13
nosotros en ningún momento vamos a estar llamando el plano vertical superior no lo vamos a llamar así 00:09:23
nosotros lo vamos a llamar como pvp que es el pvp es el plano vertical de proyección es donde se 00:09:32
proyectan los puntos en el vertical decir tú aquí tienes el punto a y cuando tú lo observas desde 00:09:46
de este lado se proyecta sobre la pared como punto A2, ¿vale? En el vertical siempre van 00:09:53
los 12 y en el horizontal los 12 es esto que hemos estado poniendo aquí, ¿vale? En la 00:10:02
vertical siempre van los 12 y en los horizontales siempre van los 1, siempre, ¿vale? Esto no 00:10:08
preocuparos que al principio es como muy confuso pero luego ya lo vais entendiendo todo, ¿vale? 00:10:14
vale, en el plano vertical de proyección es lo siguiente 00:10:19
imagínate que tú tienes esta figura y tú coges una linterna 00:10:23
y le proyectas desde aquí luz, tú atrás estarías 00:10:27
proyectando una sombra, ¿vale? pues esa sombra que tú 00:10:31
proyectas, la proyección de ese objeto en la pared 00:10:35
te define pues el punto A2, B2 y C2 00:10:39
¿vale? y si os fijáis arriba nos decía que esto se trataba 00:10:43
de una proyección cilíndrica ortogonal, es decir, este rayo 00:10:47
que yo tengo aquí, que me lo llevo, lo proyecto hasta que 00:10:51
toque en la pared, esto está en perpendicular a la pared 00:10:55
¿vale? es como si tú tuvieras un objeto, me voy a levantar 00:10:59
para explicaros un poco, y ahora pausa 00:11:03
vale, entonces, el plano vertical de proyección es todo 00:11:06
este que tenemos aquí, todo esto, ¿vale? 00:11:11
¿Vale? Todo esto. Plano vertical de proyección. Tanto el superior como el inferior. Y engloba los dos. ¿Vale? Y luego tenemos plano horizontal de proyección. De hecho, luego estaremos todo el rato. ¿Esto dónde lo veo? ¿En el PVP? ¿En el PHP? Estaremos hablando así. 00:11:15
Plano horizontal de proyección 00:11:31
El plano horizontal de proyección es todo esto 00:11:39
¿Vale? Es como si fuese todo el suelo 00:11:42
La realidad es que nosotros luego cuando pensamos en el PVP o el PHP 00:11:46
Viene a ser básicamente con este triedro de aquí 00:11:50
¿Vale? ¿Qué más elementos tengo yo aquí en el sistema diédrico? 00:11:53
Pues tengo por ejemplo el plano de perfil 00:11:58
al que denominamos con las letras 00:12:01
plano 00:12:04
perfil 00:12:06
¿vale? plano de perfil 00:12:08
¿cuál es el plano de perfil? es lo mismo 00:12:12
que este de aquí de tercera proyección 00:12:14
¿veis que pone aquí PP? 00:12:16
vale, el plano de perfil 00:12:18
tú tienes digamos, tú tienes 00:12:20
como un triedro que tú tienes 00:12:22
que desmontar, ¿veis como 00:12:24
el plano de perfil viene luego aquí una 00:12:26
curvita y se proyecta atrás? 00:12:27
¿Veis esto? Es como si tú pudieras separarlo y te coges y lo echas aquí atrás. ¿Se ve? Mal. 00:12:31
Eso es porque, repito, tú tienes la figura en 3D, pero para dibujarla tú tienes que descomponer el triedro y ponerlo en 2D, como si fuera un único folio. 00:12:38
Y luego tenemos otro elemento, que es esto que viene aquí, que pone LT, que significa línea de tierra. 00:12:49
La línea de tierra separa al plano vertical del plano horizontal 00:12:58
Es el que te dice, de esta línea para arriba pones dos es 00:13:06
De esta línea para abajo tienes que poner uno 00:13:10
¿Vale? Es la división 00:13:13
Bien 00:13:15
Vamos a ir haciendo esto en conjunto que yo creo que va a ayudar más a entenderlo 00:13:16
Mirad, esto que yo tengo aquí en 3D es esto que yo tengo aquí en 2D 00:13:21
Nosotros, como vamos a dibujar, es así 00:13:26
pero tú tienes que ser capaz 00:13:30
aquí sí que ya entra en juego, no es como la geometría 00:13:32
plana, que es un poco 00:13:35
pues es así, me aprendo el método y sé hacerlo 00:13:36
sino que aquí ya entra en juego 00:13:39
el desarrollo de vuestra capacidad 00:13:40
espacial, ¿vale? 00:13:42
habrá gente que la tenga muy desarrollada 00:13:44
y otra gente que no, esto se desarrolla 00:13:46
poco a poco y a base de trabajarla 00:13:48
¿vale? y habrá gente que no haya manera 00:13:50
que no la va a desarrollar nunca, que también lo hay 00:13:52
vale 00:13:54
fijaros, nos vamos a fijar 00:13:55
en el plano vertical, esto que yo tengo aquí, todo esto, esta línea 00:13:59
con los dos trazos, estos pequeñitos, eso es la línea de tierra 00:14:02
y es obligatorio poner un trazo a la izquierda 00:14:06
de la línea y otro trazo a la derecha, si no lo pongo es simplemente una recta 00:14:10
¿vale? no es una línea de tierra, ¿vale? eso es la línea de tierra 00:14:15
ponerle aquí si queréis, no hay ni que escribirlo, pues es 00:14:18
lo que divide el plano vertical del plano horizontal, es como si tú 00:14:22
pudieras coger el suelo, el zócalo de aquí de la clase, sí, el zócalo de aquí de la 00:14:28
clase es tu línea de tierra que separa la pared del suelo y tú imagínate que podrías 00:14:33
coger el suelo y echarlo así para abajo y tumbarlo. Pues el zócalo sigue estando ahí 00:14:39
y te sigue dividiendo la pared del suelo, aunque tú te lo tengas todo así recto, ¿vale? 00:14:44
Esto es la línea de tierra. No hay que ponerlo, simplemente yo os lo pongo aquí, estamos 00:14:49
en teoría para que lo sepáis, vale, fijaros, en la parte vertical, vale, mirad, en la parte 00:14:55
vertical iba diciendo, toda esta parte de aquí, veis como es la proyección del A2C2B2, 00:15:03
la proyección aquí de los puntos, vale, y luego la parte horizontal la pongo aquí, 00:15:09
si os fijáis, en el 3D lo que hace es, vale, yo esto no puedo coger y dibujarlo así en 00:15:16
2D, ¿qué es lo que ocurre? que tú tienes que cogerte 00:15:21
y este plano es como que se tumba 00:15:24
¿vale? este plano se echa 00:15:29
al suelo, ¿vale? y ahí 00:15:34
es donde yo veo, yo proyecto y luego para poder dibujarlo en 2D 00:15:37
lo bajo y se me queda así dibujado 00:15:41
¿vale? y aquí veis como tengo lo de los 12 que están 00:15:45
arriba, los unos están abajo. Vale, pues ese es el orden. Los dos es arriba, los unos 00:15:49
abajo. Siempre. Bueno, no siempre. Luego lo vamos a ir viendo. Y aquí en el plano horizontal, 00:15:56
aquí lo que ocurre es que cojo este plano y lo echo para atrás. De esta manera consigo 00:16:03
que todo esté en 2D. ¿Veis cómo de esta manera consigo que todo esté en 2D? Y aquí 00:16:10
ya no pones dos, ya no pones uno, la tercera proyección 00:16:16
todo lo que hagas en el plano perfil lleva el número tres 00:16:20
¿vale? esa es la nomenclatura 00:16:24
esta parte de aquí que se ve una curva es importante 00:16:27
porque luego ahora nos vamos a meter directamente a ella a trabajar con el punto 00:16:32
y lo mismo que el plano horizontal en esta parte baja y se solapa 00:16:36
con el plano vertical inferior 00:16:41
se solapa, esta parte de aquí, el plano horizontal posterior, lo subes y se solapa con el PVS, 00:16:44
por eso aquí os dice que el PVS, el plano vertical superior, coincide con el plano horizontal 00:16:54
posterior, porque este lo tienes que subir, ¿vale? Se solapa, a ver, aquí, esto de aquí 00:17:01
se solapa, y aquí abajo tengo el plano vertical inferior 00:17:09
y además el plano horizontal anterior, porque 00:17:14
al bajar esto aquí, solapo los dos planes 00:17:18
¿vale? esto es como yo consigo pasar en diédrico, de tres dimensiones 00:17:21
a dos, ¿vale? venga, pues vamos a 00:17:26
seguir con el punto, y aquí yo creo que 00:17:29
ya os va a ir ayudando a ir entendiendo mejor 00:17:37
Vale, el mínimo elemento que tenemos siempre en dibujo 00:17:39
El mínimo elemento que tenemos siempre es el punto 00:18:04
Luego del punto, yo con muchos puntos que están juntitos uno al lado del otro 00:18:08
Consigo una recta 00:18:13
Cuando yo tengo varias rectas, consigo un plano 00:18:14
Vale, el alfabeto del punto 00:18:17
Se le llama alfabeto del punto porque nosotros en el lancenal 00:18:20
Tenemos A, B, C, ta, ta, ta, ta, ta, así hasta, creo que son 27 letras 00:18:23
Pues en el alfabeto del punto significa que tú tienes 16 posiciones posibles para poner un punto y esas son las que aparecen aquí y que vamos a ir estudiando poco a poco. 00:18:27
Entonces, esto son 16 posiciones. Un punto puede estar definido por una coordenada. Yo puedo tener aquí, que tengo que ir mirando para que me entre todo, tengo un punto A y me lo pueden dar por coordenadas. 00:18:40
Es decir, a ti te dan una coordenada X, una coordenada Y y una coordenada Z. 00:19:03
La X, es decir, la primera coordenada que te están dando es la distancia. 00:19:10
X, distancia. 00:19:15
Distancia desde el origen. 00:19:21
O, siempre te van a dar en la línea de tierra, te van a poner como una línea y un cerito o una O, que ese es como tu origen. 00:19:27
A partir de ahí vas tomando las medidas con la regla. Lo vamos a hacer. La Y es el alejamiento. El alejamiento es la medida que tú tomas desde la línea de tierra en el plano horizontal. 00:19:35
Es decir, el alejamiento tú lo vas a definir con los unos 00:19:55
Porque hemos dicho que en el horizontal va el uno 00:20:01
¿Vale? Entonces, el alejamiento es la distancia que tienes 00:20:03
En la horizontal, desde la línea de tierra 00:20:06
Todo esto se va a entender, ¿eh? No os preocuparos 00:20:09
Y luego, Z es la cota 00:20:12
Que es la distancia que tú mides desde la línea de tierra en el plano vertical 00:20:15
Es decir, esa distancia te mide dónde vas a poner la proyección 2 00:20:22
Y no, no es la altura, la cota es la altura del punto 00:20:29
La Y es la distancia que tienes al plano vertical 00:20:40
Lo vamos a ver ahora porque os voy a hacer un 3D para que lo entendáis 00:20:46
Esto está en el plano horizontal de proyección 00:20:49
Y esto está en el plano vertical de proyección 00:20:56
Vale, cosas importantes y que os dije el primer día de cómo se define un punto 00:21:02
O cómo se representa el punto 00:21:09
El punto se tiene que representar con una X 00:21:10
Un más 00:21:14
Algo así 00:21:17
o que viene un arco y otro arco 00:21:19
esto es correcto 00:21:21
lo que yo no puedo hacer 00:21:23
que eso ya lo sabemos, es hacer un punto gordo 00:21:25
o un punto así 00:21:28
hueco, aunque lo vais a ver así en libros 00:21:29
¿vale? eso está mal 00:21:32
esto es lo que es correcto 00:21:33
¿vale? 00:21:35
mal, bien 00:21:37
porque nosotros luego aquí 00:21:39
tenemos que representar todos estos puntos 00:21:41
que nos están dando, vamos 00:21:43
veis que aparece aquí como 00:21:45
una ruleta y aparece aquí una cruz, esa cruz equivale a esto, voy a poner aquí para que 00:21:50
se vea, ¿veis esta cruz? Pues digamos que, voy a hacer en color para que se vea, que 00:21:58
esta línea que yo hago aquí morada, esta línea morada es esta, esta línea morada 00:22:06
es esta, además si nos fijamos, ¿veis que pone plano vertical, plano vertical? Me da 00:22:17
igual lo de superior e inferior, me da igual, como si digo arriba y abajo, me da lo mismo, 00:22:26
esta línea es esta, vale, y ahora, pues con el naranja, no sé si va a destacar aquí, 00:22:30
el verdecillo este, esta línea, ¿veis?, esta línea verde, sería esta, el horizontal, 00:22:37
¿lo vemos?, vale, ¿esto qué quiere decir?, como os dije antes, el espacio se divide en 00:22:52
cuatro cuadrantes. El primer cuadrante va a ser todo este, que es desde el que tú puedes 00:22:58
observar. Lo demás, por ejemplo, este segundo cuadrante de aquí está detrás de la pared. 00:23:03
¿Tú eres capaz de, en la clase, ver lo que hay detrás de la pared? No. Pues todo lo 00:23:09
que se represente ahí estará oculto. Ya veremos cómo se hace eso. Esta parte de aquí 00:23:14
es el cuarto cuadrante y está como debajo del suelo. ¿Somos capaces de ver lo que hay 00:23:20
debajo del suelo, no, está oculto, es decir, el cuadrante del que tú eres capaz de ver 00:23:25
todo, es en el primero, en lo demás está detrás de la pared o debajo del suelo, no 00:23:32
lo veo, está todo oculto, o sea, el único cuadrante visible es el primero, ¿vale? 00:23:38
Bien, entonces yo tengo aquí mi espacio, lo tengo dividido y esto es primer cuadrante, 00:23:43
después de la pared, segundo cuadrante, desde aquí tercer cuadrante y luego aquí cuarto 00:23:48
cuadrante. Y todos estos tres yo no tengo ni idea, no puedo ver lo que hay. En el espacio 00:23:54
yo no podría verlo. Cada cuadrante se divide luego en dos partes. ¿Cómo divido cada cuadrante 00:23:59
en dos partes? Se dividen con unos planos a los que se les llama bisector, porque bisecan 00:24:08
dividen en dos partes el cuadrante. A ver si cojo un colorín y que se vea. Mirad, aquí 00:24:15
tengo el primer bisector que divide. Vamos a ver ahora por qué cuadrantes pasan. ¿Veis? 00:24:23
Yo tengo todo este cuadrante, tengo este cuadrante y lo he dividido en dos partes por este plano 00:24:31
de aquí que se llama plano bisector. ¿Creéis que ese plano lo dividimos al tuntú o que 00:24:40
tiene un ángulo concreto? Tiene que tener 45. Tú tienes que dividir el cuadrante en 00:24:47
dos partes iguales. ¿Para qué? Para que ahora tú 00:24:53
a este trozo de aquí abajo le llamas 00:24:57
primer octante, porque si tú 00:25:01
tienes cuatro partes y las divides en dos, tienes ocho. 00:25:05
Entonces, primer octante, esto, segundo 00:25:09
octante, este, tercer octante, 00:25:13
cuarto octante, 00:25:19
Quinto octante, sexto octante, séptimo octante y el octavo octante 00:25:20
¿Vale? 00:25:31
Bien, ¿por dónde pasa el primer bisector? 00:25:33
El primer bisector pasa por el primer cuadrante y por el tercero 00:25:38
¿Vale? 00:25:44
¿Lo veis? 00:25:45
¿Sí? 00:25:48
Vale 00:25:49
Y ahora, el segundo bisector lo que hace es que corta, divide al cuadrante 2 y 4 en dos partes iguales, tengo primer bisector y segundo bisector, vamos a pintarlo por ejemplo de este color naranjito, esto, segundo bisector, ¿vale? 00:25:50
Y ahora nos vamos a poner directamente al lío y vamos a pasar todos estos puntos que veis aquí, A, B, C, D, ta, ta, ta, ta, ta, ta, hasta tener los 16 los vamos a representar aquí, ¿vale? 00:26:10
Os voy a enseñar cómo se hace y luego vamos a ir viendo un poco qué es lo que va escribiendo aquí. 00:26:28
Creo que se ve un pelín turbio o es cosa mía. 00:26:36
Vale, mira, vamos a empezar con el primer punto 00:26:38
Dime 00:26:45
Ahora lo vas a entender, ¿vale? Lo vas a entender ahora 00:26:46
Mira, yo voy a empezar por el punto A, vamos a ir en orden 00:26:52
Vamos a colocar A, luego B, luego C, etc. 00:26:56
Vale, el punto A lo vamos a poner en esta primera línea 00:26:59
Ya nos ha puesto aquí las 16 líneas sobre las que me tengo que poner 00:27:02
Estas líneas son perpendiculares a la línea de tierra 00:27:06
Para que lo sepáis 00:27:11
Vamos a poner aquí para que lo sepáis 00:27:12
Todas estas líneas, cuando yo tengo que colocar un punto 00:27:14
Tiene que ser perpendicular a la línea de tierra 00:27:17
Vamos a considerar que este primer punto 00:27:19
A está situado a una distancia del origen de 0 00:27:23
Es decir, su coordenada, la coordenada de A va a ser 0 00:27:28
Vamos a ir escribiendo todo 00:27:34
Mira, esto es 0, aquí 00:27:35
Aquí, en todo este hueco me voy a ir poniendo todos los puntos para que veáis cómo se sacan las coordenadas 00:27:38
Entonces vamos a empezar por el primero 00:27:43
Y el A está colocado en 0, es decir, está en el origen 00:27:45
Lo siguiente era la Y 00:27:48
La Y te dice que es el alejamiento 00:27:52
Y que es lo que tú tienes que medir en el plano horizontal 00:27:55
Entonces te coges la regla 00:27:59
Y el alejamiento es la distancia que tienes 00:28:01
desde donde está el punto A hasta el plano vertical, este morado. 00:28:05
En el sistema dihídrico hay muchas cosas que van al revés. 00:28:12
¿Esto qué quiere decir? 00:28:16
Tú dices, oye, pero si me ha dicho la profesora que la Y es el alejamiento 00:28:17
que lleva un 1 y que los unos están en la horizontal 00:28:21
y además aquí viene escrito cómo voy a coger la distancia del vertical. 00:28:25
Sí, es por lo siguiente. 00:28:31
Mira, vamos a representar este punto 00:28:33
Bueno, voy a representar otro punto A, ¿vale? 00:28:35
No este, va a ser más bien como si fuera un B 00:28:38
Bueno, lo hago así 00:28:40
Yo tengo este 3D 00:28:42
Yo tengo este 3D, ¿vale? 00:28:44
Yo tengo esto 00:28:54
Y tengo aquí un punto A 00:28:55
Que está volando, ¿vale? 00:28:58
Esto es mi línea de tierra 00:29:00
Este es mi plano vertical 00:29:01
Y este es mi plano horizontal 00:29:03
Y digo, vale, lo estoy mirando desde aquí 00:29:05
Proyecto en el suelo 00:29:08
Pues ahí, resulta que cae ahí, ¿vale? 00:29:09
Tú tocas el suelo, tocas ahí 00:29:13
¿Quién estaba en el plano horizontal? 00:29:14
Hemos dicho que los unos 00:29:17
Vale, pues a uno 00:29:18
¿Cuál es la distancia Y? 00:29:20
La distancia es la que tienes 00:29:24
En perpendicular al plano vertical 00:29:26
Esta distancia 00:29:29
Es el alejamiento 00:29:30
Es la distancia que hay 00:29:37
Desde donde está el punto 00:29:38
hasta el plano vertical, pero donde tú lo dibujas 00:29:40
es en el horizontal, justo al contrario, sin embargo 00:29:44
yo este punto, yo quiero sacar donde está A2, lo proyecto 00:29:48
o sea, ahora estoy mirando desde aquí, lo proyecto 00:29:51
y aquí arriba, me tiene que coincidir 00:29:55
¿veis? esta distancia tiene que ser la misma, esto es 00:30:00
A2, ¿cuál es la cota? 00:30:03
la distancia que hay 00:30:07
desde la proyección del punto, desde la proyección 00:30:10
vertical del punto al plano horizontal, eso es la cosa 00:30:15
¿vale? ¿se entiende esto? 00:30:19
no, no tiene por qué 00:30:26
¿vale? entonces el alejamiento muy importante es la distancia 00:30:28
que tú tienes desde la proyección horizontal al plano vertical 00:30:32
Y la cota es la distancia que tienes desde la proyección vertical al plano horizontal, es como si fuera la altura, ¿vale? Vale, visto esto, nos venimos aquí y yo veo, ¿vale? A lo tengo aquí, si yo quiero saber cuál es la Y, que era el alejamiento, tengo que ver la distancia que tengo al plano vertical. 00:30:36
¿cuál es la distancia al plano vertical? 00:31:02
el plano vertical es este, ¿no? 00:31:06
pues cojo 00:31:09
y digo, pues a ver 00:31:09
de aquí a donde está 00:31:11
A, tengo como 00:31:13
3,6 más o menos 00:31:15
voy a ponerlo a 3,6, queda 35,5 00:31:16
pero bueno, 3,6 00:31:19
vale, está a 36 00:31:21
porque no se dan las medidas en centímetros 00:31:23
se dan en milímetros, entonces 00:31:25
el punto, la proyección 00:31:27
A1 está 00:31:29
a 3,6 del plano 00:31:31
vertical 00:31:33
36, pues a esto es 00:31:34
y estoy completando aquí su coordenada 00:31:38
¿vale? 00:31:40
esto es siempre así 00:31:46
o te da el punto o te tiene que dar coordenadas 00:31:48
para que tú lo representes, y nosotros lo que vamos a hacer es 00:31:50
nos dan los puntos aquí en el espacio 00:31:52
vamos a sacar sus coordenadas 00:31:55
y los vamos a representar en 2D 00:31:56
vamos a hacer más pasos 00:31:58
y ahora tengo que ver 00:31:59
Me falta la Z 00:32:02
La Z es la altura 00:32:03
La cota del punto 00:32:05
Respecto del plano horizontal 00:32:07
¿Este punto tiene 00:32:09
Altura? 00:32:12
No, está 00:32:14
Eso se dice, si la altura no tiene 00:32:15
Significa que está 00:32:18
Contenido en el suelo 00:32:20
¿Vale? 00:32:21
La X es la distancia que tienes 00:32:25
Al orificio 00:32:27
En este caso tienes que tener 00:32:28
fe, en este caso tenéis que tener fe porque aquí no lo podemos ver, entonces no os lo 00:32:34
puedo explicar aquí, no, el origen sería cuando tú estás aquí, cuando tú estás 00:32:38
aquí, pues por ejemplo que te diga que esto de aquí es O, y entonces cuál es la distancia 00:32:46
la que hay desde aquí hasta la proyección, este trozo es la distancia, esto es la distancia, 00:32:51
para tú saber desde O si tienes que colocártelo aquí o si tienes que representar el punto 00:33:01
aquí, por ejemplo, B2 y B1, ¿vale? Es la distancia que tienes el punto respecto del 00:33:06
origen. Esa es la distancia, ¿vale? Y es la primera coordenada. Vale. Entonces hemos 00:33:19
dicho, muy bien, que el punto A no tenía altura porque estaba como contenida en el 00:33:27
plano horizontal. Por lo tanto, aquí la Z es 0. ¿Qué significa lo de contenido en 00:33:33
el plano horizontal? Vale, pues entonces, una vez visto ya así levantado como sería, 00:33:40
yo voy a coger y voy a representar mi punto. Ahora imagínate, te han dado las coordenadas 00:33:48
y tú las tienes que representar aquí. ¿Esto hemos dicho que es el origen? Pues yo directamente, 00:33:53
como resulta que el punto A no se separa del origen 00:34:00
va a ir aquí en la perpendicular, vale, los siguientes 00:34:04
36 que es el alejamiento, el alejamiento se mide 00:34:08
siempre, o se proyecta siempre en la horizontal 00:34:12
cojo mis 36 y los pongo aquí 00:34:15
ahí, sí 00:34:19
porque mira, si tú miraras esto 00:34:23
lo que hemos dicho antes que tú esto lo tienes que tirar para abajo 00:34:26
cuando tú lo tires para abajo, esta línea 00:34:31
se te va a dibujar como aquí, ¿vale? 00:34:35
entonces, simplemente el punto con que hagáis así 00:34:42
ya está representado, no hay que hacerle nada más 00:34:46
y esto es A1, por esto 00:34:49
tú esto aquí lo tienes en tres dimensiones 00:34:54
pero tú lo tienes que pasar a dos, este plano baja 00:34:59
y entonces al bajar también baja el punto que se 00:35:03
dibuja aquí, ¿sí? Vale, todo esto 00:35:07
vamos a escribir, todo esto es el 00:35:11
alejamiento, esto, alejamiento 00:35:15
todo eso es el alejamiento, esa es la distancia 00:35:20
la cota es desde el plano horizontal, acordaos que os dije, la línea de tierra 00:35:24
te marca dónde empieza un plano y dónde empieza otro entonces la cota es como la altura del punto 00:35:29
desde donde desde la línea de tierra para arriba cuánto pues hemos dicho que no hay nada que está 00:35:35
contenido en el plano horizontal vale es decir aquí a 2 directamente sobre la línea de tierra 00:35:43
¿Por qué es eso? 00:35:52
Os lo represento 00:35:55
Venga, pues para finalizar 00:35:55
Esto, veis que pone aquí 00:35:57
Ya está todo preparado, claro 00:36:00
Están los apuntes preparados 00:36:01
¿Veis que pone aquí punto tipo traza? 00:36:02
Eso significa 00:36:07
Que en el momento que 00:36:08
Una de las dos, o la cota 00:36:09
O el alejamiento 00:36:11
Sean cero, significa que 00:36:13
Tu punto está contenido en un plano 00:36:16
En este caso está contenido 00:36:18
En el plano horizontal 00:36:20
Y esos puntos se les llama punto tipo traza 00:36:21
Pues cuando tengas 00:36:24
Aquí tendrás a lo mejor 00:36:29
Tendrás un cero 00:36:31
En la Y tendrás cero 00:36:31
Y aquí tendrás un valor 00:36:33
¿Vale? 00:36:35
Pues lo pondrás 00:36:38
El 2 por aquí arriba 00:36:39
Y el 1 estará aquí 00:36:41
Cuando lleguemos a ese punto 00:36:42
Porque lo vamos a hacer en todas las posiciones 00:36:44
Pues haré lo mismo 00:36:46
Me salgo aquí, lo hacemos con la goma 00:36:47
Para que veáis 00:36:49
Vale 00:36:50
Pues lo dejamos hasta aquí 00:36:51
Pero quiero deciros una cosa 00:36:55
Materias:
Dibujo Técnico
Niveles educativos:
▼ Mostrar / ocultar niveles
  • Bachillerato
    • Primer Curso
    • Segundo Curso
Autor/es:
Carmen Ortiz Reche
Subido por:
Carmen O.
Licencia:
Todos los derechos reservados
Visualizaciones:
1
Fecha:
15 de diciembre de 2025 - 12:21
Visibilidad:
Clave
Centro:
IES LA SENDA
Duración:
36′ 57″
Relación de aspecto:
1.78:1
Resolución:
1280x720 píxeles
Tamaño:
1.20

Del mismo autor…

Ver más del mismo autor


EducaMadrid, Plataforma Educativa de la Comunidad de Madrid

Plataforma Educativa EducaMadrid