Saltar navegación

DT1.GP.U3.5_ Girotecia (para PAU) - Contenido educativo

Ajuste de pantalla

El ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:

Subido el 5 de diciembre de 2025 por Carmen O.

1 visualizaciones

Descargar la transcripción

Vale, en la clase de ayer estuvimos viendo que era la cirotecia, ya comentamos que esto hay que mirárselo de cara a la PAU, no de cara a que yo vaya a poner esto en un examen, para nada, sí que aparecen las láminas, algún ejercicio de eso, y la manera de trabajarlo es exactamente igual, solo que aquí es verdad que lo estoy haciendo con un triángulo para poder ir más rapidito, y creo que en eso venía algún pentágono, un hexágono o algo así, pero la manera de trabajar es exactamente la misma. 00:00:00
una vez que tengas tirado un punto o dos, ya con eso te sale lo demás 00:00:28
¿vale? entonces, vamos a continuar 00:00:32
vamos a hacer este ejercicio de aquí, voy a hacer zoom 00:00:35
esto está ya subido, ¿vale? a la aula virtual, la clase de ayer 00:00:39
vale, y nos dice, dibuja el triángulo equilátero 00:00:43
ABC, vale, perdón, pues voy a ponerlo 00:00:48
que se vea, que si no, eh, pausa, nos dice, dibuja el triángulo 00:00:52
equilátero ABC dado el vértice A, este de aquí, situando el vértice B en una circunferencia 00:00:56
y el C en la otra. No nos está diciendo si tenemos que situar a B en la pequeña o a 00:01:04
C en la grande, no nos ha dicho nada. Entonces básicamente vamos a poner a cada una donde 00:01:10
nos dé la gana. Yo voy a poner en esta, voy a meter los B. B lo voy a poner en esta, por 00:01:15
ejemplo, y C la voy a poner en esta, ¿vale? Porque yo quiero. Y así también me ayuda 00:01:22
a centrar, un poco a visualizar cómo van a estar los puntos. Vale. Cuando teníamos 00:01:28
una recta, nos lo hemos dicho que siempre tienes que hallarte, al menos al principio, 00:01:35
luego ya vimos ayer en el ejercicio este que tenemos aquí arriba, que el triángulo podía 00:01:39
crecer, porque esto era una mezcla entre homotez y giro, ¿vale? Pues aquí, para tener 00:01:43
el mínimo, digamos, el triángulo de menor tamaño 00:01:50
su lado, para una recta trazábamos la perpendicular, que era como 00:01:54
la mínima distancia, ¿no? Vale, ¿qué creéis que vamos a tener 00:01:58
que hacer para obtener el triángulo de menor tamaño? 00:02:02
Aquí, si no tenemos recta, ¿qué se os ocurre? ¿Cómo unimos 00:02:06
A con G? Acordaos que los vértices tienen que estar en el borde 00:02:10
de la circunferencia. Mirad, si yo uno 00:02:16
A con el centro, este de aquí, porque yo no puedo trazar 00:02:20
perpendicular, ¿vale? Si yo uno A con el centro 00:02:24
más o menos, voy a hacerlo así flojito 00:02:28
más o menos tendríamos aquí a B, ¿no? Vale 00:02:32
Si yo uno A con este centro, pues C estaría por aquí 00:02:35
¿Cuál de estos dos es el lado de menor tamaño? 00:02:40
El del C, ¿no? Pues entonces tienes que trabajar con esta 00:02:45
si en algún momento pensáis 00:02:48
vale, en la recta yo sé que tengo que hacer 00:02:51
una pérdida micular, pero en la circunferencia 00:02:52
pues no sé, se me ocurre 00:02:55
pues a lo mejor tengo que hacer una tangente 00:02:56
tengo un punto exterior 00:02:58
pues me hago lo de la media trí 00:02:59
circunferencia 00:03:02
donde me corte tangente, vale, imagina 00:03:04
que hacéis eso, que hacéis el proceso 00:03:06
y es eso, y te sale aquí 00:03:08
¿veis que este 00:03:10
lado es bastante más grande que 00:03:12
simplemente uniendo con el centro? 00:03:14
pues esa no es la opción 00:03:17
siempre es la que sea 00:03:18
más corta, ¿vale? 00:03:20
lo digo por si en algún momento estáis 00:03:22
haciendo ejercicio y lo pensáis, oye 00:03:23
¿pero esta es la más corta? no 00:03:25
si yo voy acercando esto para acá, para acá, para acá 00:03:27
consigo que esta 00:03:29
sí, esta distancia 00:03:31
sí sea la de menor tamaño, ¿vale? 00:03:33
o sea, que es un poco el por eso 00:03:36
vale, pues voy a borrar 00:03:37
y hemos dicho que lo que vamos a hacer 00:03:39
como tiene que ser el de menor tamaño 00:03:41
porque ya luego irá creciendo 00:03:44
la figura o no 00:03:46
Pues es unirme con este centro de aquí 00:03:47
Vale, pues me uno 00:03:50
A con el centro de la circunferencia pequeña 00:03:52
Porque de esta manera 00:03:55
Consigo que este lado 00:03:57
Sea el más pequeño 00:04:00
¿Vale? 00:04:01
Y voy a decir, vale, pues tú eres por ejemplo 00:04:03
¿Vale? Tú eres C' 00:04:06
¿Sabemos hacer un triángulo equilátero? 00:04:09
Sí, ¿no? 00:04:14
les acabo de enseñar a los del primero de la ESO 00:04:14
a hacerlo, o sea que vosotros 00:04:17
ya ha sobrado 00:04:19
vale, me hago mi triángulo equilátero 00:04:20
el de menor tamaño posible 00:04:23
claro, a lo mejor me decís 00:04:29
lo puedes hacer más pequeño todavía 00:04:31
claro, pero ya no toca a la circunferencia 00:04:33
vale, entonces ya no me vale 00:04:35
vale, pues esto sería así 00:04:38
y este aquí 00:04:41
y esto es 00:04:46
prima. A ver, ¿dónde lo pongo? 00:04:48
Para que luego no me estorben. 00:04:51
B prima. ¿Hasta aquí 00:04:54
bien? Vale. 00:04:57
A ver qué pienso. 00:05:05
Entonces yo cada año que tengo 00:05:14
que dar esto, me lo miro el vídeo. Pero 00:05:16
como han pasado dos días, se me ha olvidado ya. 00:05:17
Ya se me ha olvidado cómo se ha quedado. 00:05:20
Bueno, a ver si me deja acceder. 00:05:22
Uy, no. Esto va a 00:05:28
ser de lento siempre. 00:05:29
Vosotros ahora no lo veis ahí, ¿no? 00:05:33
Madre mía, el consuelo. 00:05:36
A ver. 00:05:39
¿Sabes que esto sí lo veo? 00:05:43
Lo veo, lo veo. 00:05:45
Me lo traigo, me lo traigo, me lo traigo. 00:05:47
Pero lo que dudo es dónde está aquí. 00:05:50
A ver, que me voy a mirar la contraria. 00:06:06
Lo vamos a ver juntos y luego lo vamos a dejar. 00:06:34
lo concluyo aquí y así se queda grabado 00:07:15
a ver si me deja entrar 00:07:19
madre mía señor 00:07:24
madre mía de verdad, como puede ir esto tan lento 00:08:01
es que el instituto que salió el año pasado, internet iba genial 00:08:10
pero aquí tío, cada dos por tres se cae, cada dos por tres 00:08:14
Le doy un botón y tarda un siglo. 00:08:18
Es que no me acuerdo cómo se hacía. 00:08:30
Madre mía, señor. 00:09:12
Es que no me pido de deciros una cosa, que es lo que yo creo, 00:09:15
pero no me pido de deciros eso y que luego no sea. 00:09:18
No me pido de deciros algo que luego esté mal 00:09:22
Aquí 00:09:28
Mira, vamos a ver esto por aquí 00:09:49
Lo vemos 00:09:58
A ver el sonido como está 00:10:00
Aquí está subido 00:10:02
a ver en pantalla 00:10:03
claro, si 00:10:04
aquí pone que la lámina es suya 00:10:07
es la misma lámina, claro 00:10:09
que hay algunas que ella hace y las dejo 00:10:11
tal cual y hay otras que yo las modifico 00:10:13
puede que haya algunos 00:10:15
esta, alguno tendrá 00:10:21
en su página resuelto, alguno 00:10:23
vale 00:10:26
lo escuchamos, lo vemos 00:10:27
y luego lo regrabo yo aquí en un momento. 00:10:38
A ver. 00:10:42
Ya va más rápido que yo clicando. 00:10:54
Ah, ya está. 00:11:04
Este lado de aquí va a estar girando. 00:11:05
Ya se lo aquí. 00:11:07
Y va a estar recibiendo este movimiento. 00:11:09
Tengo que copiar el movimiento. 00:11:12
Ya está haciendo la receta perpendicular. 00:11:14
Yo la copiaba con la perpendicular. 00:11:16
Ahora lo que voy a copiar es el movimiento, lo que va a ir aquí. 00:11:18
Ya está. 00:11:23
Ahí está la que he copiado. 00:11:25
Pero yo no me piaba hacerlo. 00:11:27
Vale, pues listo. Ya se hace loco. 00:11:29
Lo dejamos abierto por si acaso. 00:11:32
Como que lo que me ha costado tener esto... 00:11:38
Vale. 00:11:43
Espera, que me salga esto así. 00:11:50
que si no, no veo si estoy reanudando 00:11:53
vale, estamos 00:11:57
estamos 00:12:05
venga 00:12:08
bueno, lo que tenemos que hacer entonces 00:12:10
es intentar copiar este movimiento 00:12:13
que tenemos aquí de la circunferencia 00:12:15
y ir poco a poco, porque tú al final 00:12:16
lo que tienes es esto 00:12:18
tengo 00:12:19
este triángulo que está así 00:12:22
tengo aquí el punto C y yo lo que tengo que intentar 00:12:24
es que ahora mismo tengo aquí B 00:12:27
y me va a ir creciendo 00:12:29
¿por qué sé que me va a ir creciendo 00:12:31
y que se va a estar aplicando la homotecia? 00:12:33
porque si yo giro este triángulo 00:12:35
y yo tengo aquí B 00:12:37
en ningún momento voy a conseguir 00:12:38
que B toque 00:12:40
a la circunferencia esta grande 00:12:42
esto lo veo, ¿no? 00:12:44
si yo tengo aquí B, lo veis que está ahí puesto 00:12:46
y lo voy tirando 00:12:48
si mantiene el tamaño, lo único que voy a conseguir 00:12:49
es que jamás voy a tocar 00:12:52
a la circunferencia grande y que además 00:12:54
voy a separar C de la circunferencia en la que está 00:12:56
y yo sé que tiene que estar en ella, eso lo veo, ¿no? 00:12:59
Entonces yo sé que sí o sí me va a tener que ir creciendo 00:13:02
para conseguir que B llegue a tocar a esta circunferencia 00:13:05
y que C se mantenga aquí como si fuera un carro 00:13:09
¿Vale? Entonces, este lado 00:13:12
que he fallado antes en eso, debería estar prolongado 00:13:15
¿Vale? Bien largo 00:13:18
Y ahora, igual que en los ejercicios anteriores 00:13:21
copiábamos este movimiento que hacíamos perpendicular y nos lo llevábamos sobre un lado, ¿os acordáis 00:13:24
que hacíamos esto? Teníamos aquí, digamos, como el movimiento que yo sé que me tengo 00:13:31
que desplazar así y me lo copiaba la perpendicular sobre el otro lado, ¿lo veis? Que lo copiábamos 00:13:39
sobre el lado AB', ¿vale? Pues entonces yo lo que voy a hacer es que sobre el lado 00:13:45
a B' me lo voy a ir copiando el movimiento 00:13:50
¿cuál es el movimiento? si tú haces así, es decir 00:13:54
estás desplazándote para acá, tú tendrías aquí una circunferencia 00:13:58
¿no? si tú te vienes aquí, esa circunferencia 00:14:02
otra vez más para acá, sigues girándola y otra vez más para acá 00:14:06
¿hasta cuándo? hasta que consigas que esto 00:14:10
te lo hayas conseguido desplazar hasta aquí 00:14:14
¿vale? lo seguís un poco la idea con esto de la circunferencia 00:14:17
vais moviendo la circunferencia y haciendo así 00:14:21
¿hasta dónde? hasta conseguir solapar esto 00:14:22
aquí, con lo cual, ¿qué hago yo? 00:14:25
pues me cojo este centro 00:14:29
esta distancia, que es lo mismo que si lo cogiéramos 00:14:31
desde arriba, también lo digo, podríamos poner como si 00:14:35
fuera el centro de giro 00:14:38
y me llevo el centro de la circunferencia 00:14:40
¿vale? esto, esta distancia, ¿veis que es 00:14:43
desde el centro de la circunferencia al vértice 00:14:47
pues tú ahora 00:14:49
desde aquí, desde el vértice 00:14:51
tendrías como el centro 00:14:52
de esta circunferencia 00:14:56
¿vale? es lo mismo que si hubiéramos 00:14:57
hecho esto, pincho en A 00:15:00
hago como si fuera mi centro de giro 00:15:02
abro hasta el centro 00:15:04
de la circunferencia 00:15:06
veis que coincide en el mismo sitio 00:15:09
también 00:15:12
¿vale? y esto 00:15:14
me lo voy desplazando 00:15:16
vamos a pintarlo con el color naranjita 00:15:18
como hacíamos antes 00:15:20
digamos que esto 00:15:21
que antes en una recta la teníamos 00:15:23
en perpendicular 00:15:27
ahora tengo aquí como si fuera un ángulo 00:15:28
mixilíneo 00:15:34
un ángulo mixilíneo es porque tienes 00:15:35
una parte recta y otra parte curva 00:15:38
es mixto, ¿vale? 00:15:40
entonces yo tengo esto como lo que 00:15:42
hacíamos antes de las flechitas 00:15:44
pues es la misma idea, solo que 00:15:46
ahora esto lo tienes aquí 00:15:48
esta línea que hacíamos así recta 00:15:50
es esta, ¿lo veis? 00:15:53
¿veis eso? vale, y ahora me falta 00:15:58
hacer esto de la curva 00:16:01
lo prolongo un poquito más si queréis, para que se vea 00:16:04
a ver que pinche 00:16:09
ahí, vale, esto es esto 00:16:12
hasta aquí estáis viendo que estamos haciendo como 00:16:14
lo mismo que hemos hecho arriba, solo que ahora no tengo 00:16:19
ángulo de 90, esto si lo veis 00:16:22
¿Qué me estoy moviendo cuando yo hago esto? 00:16:24
Me estoy moviendo además la circunferencia 00:16:29
Es decir, me cojo el radio de esta circunferencia 00:16:32
El radio de esta circunferencia 00:16:36
Me lo traigo aquí 00:16:42
Cojo la circunferencia y me la traigo aquí 00:16:44
¿Veis esto? 00:16:53
Y esa circunferencia me corta a esta de aquí 00:16:56
donde va a estar B en dos puntos 00:17:01
¿qué significa eso? 00:17:03
que entonces tengo cuantas soluciones 00:17:05
dos 00:17:07
esta de aquí, por ejemplo 00:17:08
y esta por ejemplo de aquí 00:17:13
¿sí? 00:17:19
entonces, una vez que tú ya tienes 00:17:22
el lado de un 00:17:24
triángulo equilátero 00:17:26
tú tienes por ejemplo el lado B2A 00:17:28
tú con el lado B2A tú ya puedes 00:17:30
escoger y trazarte todo el triángulo? Sí. ¿Dónde tiene que estar C? Aquí. Si he sido 00:17:32
preciso, sí o sí, tengo que conseguir que me dé aquí, ¿vale? Vale, pues vamos a ver. 00:17:40
Unimos esto, unimos esto y digo, perfecto, pues yo ahora tengo este lado AB2 que cuando 00:17:47
yo tracé aquí, me da ahí. Puedo comprobar a ver si lo he hecho bien. Pincho en B2 y 00:18:02
miro. Oye, pues parece que sí. Oye, mira, parece que me he ido un pelín. Vale, pues 00:18:12
no le hagas el otro lado. Tú ya sabes que C tiene que estar ahí. No hagas el otro arco. 00:18:17
¿Vale? Y entonces digo, perfecto, pues aquí tengo C2. Lo uno. Y ya he conseguido tener 00:18:23
un triángulo equilátero en el que B está en esta circunferencia y C está en esta. 00:18:35
¿Veis que ha crecido el tamaño del triángulo respecto al inicial? Por eso tiene homotecia 00:18:41
y giro. ¿Vale? Vale. Y ahora tengo aquí el otro triángulo B1, pues B1 hasta A, B1 00:18:48
hasta A y ahora 1A con B1, mirad, este es más grande porque tengo aquí el lado del 00:19:00
anterior y este triángulo es aún más grande, ahí, y me corta aquí, casi a ras, me está 00:19:09
dando ahí casi, casi a ras. ¿El cuál? Pues mira, me lo hago desde el otro lado. O sea, 00:19:20
yo he pinchado en A y me ha dado aquí. He pinchado en B1 y me da ahí. Entonces digo, 00:19:31
vale, pues voy a considerar que es eso. ¿Vale? Y ahora este, aquí, C1. Lo uno, lo uno y ya 00:19:35
lo tengo, ¿vale? Y veis, este triángulo pequeñito se ha ido transformando, ha ido 00:19:52
aumentando su tamaño, con lo cual, homotecia, y ha ido girando, con lo cual, giro. Por eso 00:20:00
le llamo a esto yo, girotecia, ¿vale? Porque mezcla las dos cosas. Vale, os dije que no 00:20:06
os iba a explicar este método, entonces no sé si os dejarlo simplemente porque he dicho 00:20:16
que esté grabado y ya está, porque esto solo vale 00:20:20
para este tipo de 00:20:22
ejercicio, o pasamos 00:20:23
¿qué preferís? 00:20:26
este 00:20:29
el de aquí 00:20:30
pasamos 00:20:31
lo dejamos sin hacer, vale 00:20:34
pues aquí, ¿qué es lo importante que tenéis 00:20:36
que copiaros de esta hoja? pues que 00:20:38
es importante que os copiéis 00:20:40
el movimiento, ¿cuál es el 00:20:42
movimiento? pues aquí, en esto 00:20:44
es que está circunferente 00:20:46
este 00:20:48
es esto, vale, eso es eso, que esta parte de aquí, esta es esta, eso es copiar el movimiento, 00:20:48
y que esta parte que tengo aquí de circunferencia es esto, ¿veis?, vale, entonces nos ponemos 00:21:02
aquí en grande, copiar el movimiento, ¿vale? Eso es lo que hay que hacer aquí, copiar 00:21:15
el movimiento. Bueno, pues entonces lo dejamos aquí, dejamos este sin grabar, porque es 00:21:29
que con esto ya tiene suficiente y esto a lo mejor lo único que conseguís cuando repaséis 00:21:36
esto es que os liéis y tal, entonces pasamos. Vale, además es que solo vale para esto, 00:21:41
entonces da igual, para esto no vale resolverlo 00:21:46
de esta manera 00:21:48
vale, pues eso, importante, poneros un post 00:21:49
y poneros un aviso, lo que sea de 00:21:52
oye, esto me lo tengo que mirar de cara a la paja 00:21:53
¿vale? listo, pues 00:21:56
siguiente tema 00:21:58
Materias:
Dibujo Técnico
Niveles educativos:
▼ Mostrar / ocultar niveles
  • Bachillerato
    • Primer Curso
    • Segundo Curso
Autor/es:
Carmen Ortiz Reche
Subido por:
Carmen O.
Licencia:
Todos los derechos reservados
Visualizaciones:
1
Fecha:
5 de diciembre de 2025 - 13:45
Visibilidad:
Clave
Centro:
IES LA SENDA
Duración:
21′ 59″
Relación de aspecto:
1.78:1
Resolución:
1280x720 píxeles
Tamaño:
817.97 MBytes

Del mismo autor…

Ver más del mismo autor


EducaMadrid, Plataforma Educativa de la Comunidad de Madrid

Plataforma Educativa EducaMadrid