Saltar navegación

Activa JavaScript para disfrutar de los vídeos de la Mediateca.

El sistema de numeración romano - Contenido educativo

Ajuste de pantalla

El ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:

Subido el 22 de septiembre de 2020 por Jose Félix D.

200 visualizaciones

propiedades del sistema de numeración romano, símbolos, valores, escritura, reglas, paso de decimal a romano y de romano a decimal.

Descargar la transcripción

En el presente vídeo vamos a explicar el sistema de numeración romano. 00:00:00
En el sistema de numeración romano se utilizan siete símbolos, que son letras, 00:00:06
las letras del alfabeto español, que son la M, que equivale a mil, 00:00:11
la D, que tiene un valor de quinientos, la C, que vale cien, 00:00:18
la L, que tiene un valor de cincuenta, la X, que vale diez, 00:00:23
la V, que vale 5, y la I, que vale 1. 00:00:29
Normalmente se escriben en mayúsculas, pero podéis encontraros algún ejemplo 00:00:34
en que el número, las letras, en este caso los símbolos, 00:00:39
pues se pueden aparecer escritos en minúsculas. 00:00:43
Los números escritos en el sistema romano, pues los valores de las letras 00:00:48
siempre se escriben más a la izquierda, los valores de las letras más grande, 00:00:53
y van decreciendo hacia la derecha con valores más pequeños. 00:00:58
En principio siempre va a ser así, salvo si nos encontramos una letra que tiene un valor más pequeño 00:01:03
y a su derecha una que tiene el valor más grande, pues eso va a querer decir que el número nuestro va a llevar un 4 o un 9. 00:01:10
Lo veremos en alguna diapositiva más adelante y lo explicaremos. 00:01:19
Pero en principio, si yo encuentro este número romano, la m, como veis, tiene un valor más grande que la c, aquí aparece otra c igual que la anterior, la l tiene un valor más pequeño, la l valía 50, la c vale 100, la m valía 1000, detrás de la l va la v, que vale 5, más pequeño, por lo tanto, que la l, y por último, dos i es que cada una vale 1 y es un valor más pequeño que la v. 00:01:26
Pues bien, si me encuentro un número escrito de izquierda a derecha de valores más pequeños a más grandes, para saber qué número decimal está escrito en esta simbología romana, pues lo que tengo que hacer es sumar el valor de todas las letras que componen el número. 00:01:56
La M vale 1000, la C vale 100, la L 50, la V que vale 5 y la I 1 cada uno, es decir, sumar 1000 más 100 más 100 más 50 más 5 más 1 y más 1, 1250, 5 y 1 y 1 que son 2, 7, pues 1257. 00:02:11
Si es al revés, si me dan un número en el sistema de numeración decimal, el que utilizamos normalmente ahora, en la vida diaria, por ejemplo, el número 2376. 00:02:41
Si lo quiero escribir en numeración romana, lo primero que me tengo que dar cuenta es que no lleva ningún 4, ningún 9. 00:02:55
Bien, pues lo que tengo que ir haciendo es escribiendo las unidades del sistema decimal que tiene dicho número. 00:03:03
Es decir, yo lo que voy a tener que escribir es dos unidades de millar, es decir, dos mil, tres centenas, es decir, trescientos, siete decenas, setenta y seis unidades. 00:03:10
Es decir, para escribir este número 2376, pues escribo 2000, sería con dos veces la letra M, 300, pues tres veces la letra C, el 70, pues lo puedo escribir poniendo la letra L que vale 50 y dos veces la letra X, 10 y 10 serían 20 y los 50 de la L, 70. 00:03:24
y el 6, que lo puedo escribir con el 5 de la V y el 1 de la I, por lo tanto, VI. 00:03:52
Si yo sumo 2000 más 300 más 70 más 6, me da el número 2376. 00:04:01
Y por lo tanto, el número 2376 escrito sería MM del 2000, CCC 300, LXX, sería en 70, 00:04:08
y, por último, la V y la I, 6. 00:04:20
Y esta sería la escritura del número 2376. 00:04:23
Más reglas del sistema de numeración romano. 00:04:29
Y en las letras M, C, X e I, es decir, 1, 100, 10 y 1, 00:04:32
solo pueden aparecer, como mucho, repetidas tres veces seguidas. 00:04:42
Es decir, cuatro veces seguidas no se pueden escribir. 00:04:46
Por ejemplo, este número, vemos que tiene tres M, si se puede, dos C, también, como la C se puede repetir hasta tres veces, aquí solo aparece dos, la X aparece repetida tres veces y la Y también aparece dos. 00:04:49
Pues este sería el número MMM, tres veces mil, tres mil, dos veces cien, doscientos, tres veces diez, treinta y dos veces uno, dos, tres mil, doscientos, treinta y dos. 00:05:05
Las letras D, L y V no se pueden repetir dos veces seguidas. ¿Por qué? Si yo pusiera DD, pues serían 500 y 500, pero 500 y 500 es 1000 y para el 1000 ya tenemos la letra M. 00:05:18
Exactamente lo mismo pasaría con la LL 00:05:36
La L es 50, 50 y 50 serían 100 00:05:39
Y para el 100 ya tengo la letra C 00:05:43
Y VV serían 5 y 5 serían 10 00:05:45
Pero para el 10 ya tengo la letra X 00:05:50
Por lo tanto estas tres letras no se pueden repetir seguidas 00:05:52
Los números en el sistema decimal que llevan un 4 o un 9 00:05:57
Pues hay que tener cuidado con ellos 00:06:05
Porque no se pueden escribir sumando los símbolos de mayor valor a menor valor. 00:06:07
Por ejemplo, el 4, la forma de escribirlo es IV. 00:06:15
Cuando aparece una letra escrita de menor valor a la izquierda de un valor de otra letra que está a su derecha de mayor valor, 00:06:20
lo que hace el valor de la letra que tiene menor valor es restar su valor al de la letra de la derecha. 00:06:29
En este caso, si la V vale 5 y la Y vale 1, pues a 5 se le resta 1, por lo tanto ese es el número 4. 00:06:37
Lo mismo si tengo que escribir el 9. 00:06:47
El 9 la forma de hacerlo es que a la letra 10, al valor 10 que es la X, le resto 1. 00:06:50
10 menos 1 son 9, por lo tanto lo que escribo es la letra Y a la izquierda de la letra X. 00:06:57
Eso siempre va a pasar que un número tenga un 4 o un 9. 00:07:04
Por ejemplo, si tengo que escribir cuarenta o cuarenta y tantos o noventa, noventa y tantos, 00:07:08
la forma de escribir cuarenta sería que al cincuenta, que es la L, le resto diez, que es la X. 00:07:14
El noventa, pues al cien, le resto diez. 00:07:22
C, cien menos diez, noventa. 00:07:26
Lo mismo pasa si tengo que escribir cuatrocientos o nuevecientos. 00:07:30
500 menos 100, de C o CD, mejor escrito así, a 500 le resto 100, 400, y al 900, pues al 1000, si le resto 100, 900, ¿de acuerdo? 00:07:34
Aquí hay ejemplos de números que llevan un 4 y un 9, bien, 4, 40, 400, 9, 90, 900, luego veremos más adelante más ejemplos. 00:07:51
Si encima de algunas letras, algunos símbolos en el sistema romano, 00:08:05
aparece una línea horizontal encima de un grupo o todas las letras, 00:08:10
el valor de ese grupo de letras se multiplica por mil. 00:08:16
Lo que hace una raya encima de ellas es multiplicar por mil el valor de dichas letras. 00:08:22
Por ejemplo, V y I serían 5 y 1,6 y 1,7. 00:08:26
Pero como hay encima de todas una raya horizontal, sería 7 multiplicado por 1000, pues así escribiríamos el 7000. 00:08:33
X, V y encima de la X y la V, pues una raya. 00:08:42
X sería 10, la V sería 5, 10 y 5, 15. 00:08:47
Pues multiplicada por 1000, 15000. 00:08:52
CCLI, 100 más 100, 200, más 50, 250, y la I1, 251 00:08:55
Como todo el grupo tiene arriba una raya horizontal, pues 251 por 1000, pues 251 a 1000 00:09:06
Los romanos no escribían números muy grandes, generalmente estas cantidades no las escribían los números romanos 00:09:15
Pero en algunos sitios aparece 00:09:22
Bueno, pues vamos a ver una lista de ejemplos de cómo escribir números de número decimal 00:09:24
Cómo se escribirían en el sistema romano 00:09:32
El 68, pues como no tiene ni 4 ni 9, pues es ir sumando letras hasta que me dé 68 00:09:34
Primero escribiría el 60, pues la L que es 50 y la X, 10, 50 y 10, 60 00:09:43
y para escribir luego el 8, pues la V que es 5 y 3 veces la Y que sería 1, 1 y 1, 00:09:50
que serían 3 y los 5, 8, 60 y 8. 00:09:58
236, pues escribo 200, C y C, 30, XXX y el 6, pues la V y la Y. 00:10:03
Tampoco tenía ni 4 ni 9. 00:10:13
577 tampoco tiene ni 4 ni 9 pues escribo 500 que es la de 70 pues la l la x y la x 50 10 y 10 como 00:10:15
veis siempre primero valores los valores de las letras más grandes y luego hacia la derecha letras 00:10:30
más pequeños. Y por último, el 7, pues la V, la I y la I. 500, 70 y 7. 2.365, pues 00:10:37
2000, M y M, 300, C, C, C, tres veces la letra C, 300, 60, pues la L y la X y para escribir 00:10:51
el 5, solo la V. Siguiente, 347. Cuidado que este número tiene un 4 en el 40. Para 00:11:04
escribir el número 347, primero escribimos 300. Pues sin problema, la C se puede repetir 00:11:13
tres veces. C, C, C. Ya llevo 300. Pero ahora tengo que escribir el 40. Y el 40, si recordáis, 00:11:20
es un número, una cantidad que hay que ponerla restando. 00:11:29
Al 50, que es la L, le resto 10. 00:11:33
La X tiene un valor más pequeño que la L, 00:11:37
por lo tanto, al escribirlo delante de la L, 00:11:39
la X, que vale 10, resta a la L, que vale 50. 00:11:42
50 menos 10, 40. 00:11:46
Ya tengo escrito el 40. 00:11:48
Y el 7, como no es ni 4 ni 9, 00:11:50
pues sumando la V, que vale 5, 00:11:52
y dos veces la Y, 7. 00:11:55
Pues 347. Siguiente número, 1934. Este tiene un 9 y un 4. Cuando tenga que escribir 900 y cuando tenga que escribir 4, cuidado. 00:11:57
¿El 1000? Pues la M. Eso es fácil. 00:12:11
¿900? Lo tengo que escribir restando. 00:12:15
¿Cómo se escribe restando el 900? 00:12:17
Pues al 1000 le resto 100. 00:12:20
A la M escribo delante la C y esta CM sería 1000 menos 100, 900. 00:12:22
¿El 30? Pues XXX. Se puede repetir la X tres veces. 00:12:30
Y luego ya llegamos otra vez al 4 y el 4 también hay que escribir restándolo. 00:12:35
Al 5 escribo delante la i para que al 5 le reste 1. 00:12:40
Pues ese sería el número 1934. 00:12:45
El siguiente, el 8746. 00:12:49
Bueno, pues para escribir 8000, pues escribo el 8 y luego encima de ese grupo de cifras que formen el 8, 00:12:54
escribo una raya para multiplicarlo por 1000. 00:13:01
El 8 lo escribiría v y luego i, i, i. 00:13:04
Pues 5, 6, 7 y 8. Y encima la barra horizontal, una línea horizontal, encima de esas cuatro letras, pues 8 por 1000, 8000. 00:13:09
A continuación, 746. Pues escribo 700, no lleva ni 4 ni 9, pues la D que vale 500, la C que vale 100 y la C que vale 100. 00:13:20
500 más 100 más 100, 700. Llego a 40, 40 sí que hay que ponerlo restando porque lleva un 4, por lo tanto al 50, que es la L, escribo delante la X, le resto 10, 50 menos 10, 40. 00:13:31
Y luego el 6, la v y la i. 16.495. Pues para escribir 16.000 escribo el número 16, x, v, i y encima de estas tres letras escribo una línea horizontal. 00:13:47
XVI es 16 multiplicado por 1.000, 16.000. 00:14:03
Luego tengo que escribir 400, que como lleva el 4, le tengo que poner restando a la D, que vale 500, le resto la C, que vale 100. 00:14:07
500 menos 100, pues 400. 00:14:18
El 90 también lo tengo que poner restando porque lleva un 9. 00:14:22
Pues al 100, que es la C, le resto, por eso lo escribo delante, la X. 00:14:27
100 menos 10, 90. 00:14:33
Y por último, el 5, pues la V. 00:14:35
Y por último, 84.351. 00:14:39
Pues tengo que escribir el 84. 00:14:43
Y para escribir el 84, luego pondré encima de la raya, la raya horizontal para multiplicarlo por 1.000, sería 84.000. 00:14:45
Pero para escribir 84, cuidado que lleva un 4, por lo tanto escribo 80, LXXX, que sería 10, 10, 10, 30, y la L50, 50 y 30, 80. 00:14:54
A continuación el 4, pues el 4 es restando, al 5 le resto 1, la I y la V, por lo tanto 84 y encima de todas las letras del 84 la línea horizontal, 84.000. 00:15:07
Y luego C, C, C serían trescientos, cincuenta que es la L y el uno cincuenta y uno, ochenta y cuatro mil trescientos cincuenta y uno. 00:15:22
Ahora vamos a ver ejemplos al contrario. 00:15:34
Nos van a dar símbolos o letras, números, cantidades en el sistema de numeración romano 00:15:37
y vamos a averiguar qué número decimal sería esa escritura de esos símbolos. 00:15:44
Lo primero que tengo que mirar es si todas las letras están escritas de mayor valor a menor valor. 00:15:50
Si todas están escritas de mayor valor a menor valor, lo único que tengo que ir haciendo es sumando el valor de cada letra. 00:15:58
Por ejemplo, la X que vale 10, la V que vale 5, 1 y 1. 00:16:05
Pues efectivamente estas están escritas de mayor a menor. 00:16:10
Por lo tanto, sería 10 más 5, 15, más 1, 16, y más 1, 17. 00:16:13
Este sería 50, 10, 10 y 5, pues también van de mayor a menor. 00:16:21
Por lo tanto, 50 más 10, 60, más 10, 70, más 5, 75. 00:16:26
D, C, X, X, X, I, I, I, 500, 100, 10, 10, 10, 1, 1 y 1, 500 más 100, 600, más 30, 630 y más 3, 633. 00:16:33
M, M, M, D, C, L, V, I, I, también van de mayor a menor, por lo tanto, tres M, tres mil, la D, la C, seiscientos, quinientos y cien, seiscientos, la L, cincuenta, pues cincuenta, y luego la V, la I, y la I, siete, tres mil seiscientos cincuenta y siete. 00:16:56
C, M, aquí hay que restar porque el valor de la C es más pequeño que la M 00:17:22
luego viene la L y aquí me encuentro la I delante de la V 00:17:29
pues aquí también el 1 se lo tengo que restar al 5 00:17:34
por lo tanto sería la M que vale 1000 le resto 100 00:17:37
por lo tanto 1000 menos 100, 900 00:17:42
La L, 50, y a la V, le resto 5, bueno, que vale 5, le resto 1, 5 menos 1, 4. Por lo tanto, 900, 50 y 4. 00:17:45
M, M, pero me encuentro la Y delante de la X. La X vale 10, la Y vale 1, por lo tanto, esto lo tengo que restar. 00:18:00
M y M serían 1.000 cada uno, 1.000 y 1.000, 2.000 00:18:08
y al 10 le resto 1, 10 menos 1, 9 00:18:12
pues esto sería el número 2.009 00:18:16
Este número, pues tenemos la I escrita delante de la V 00:18:19
por lo tanto la I, 1 resta la V, 5 00:18:25
5 menos 1, 4 00:18:29
y como esas dos letras tienen encima una línea horizontal 00:18:31
pues sería 4 por 1.000, 400 00:18:35
Después ya todas las letras, si os fijáis, van de mayor valor a menor valor, pues sería 4000 más D, que serían 500, más 100, 600, más 100, 700, más 100, 800, más 10, 810, 820, 830 y el 5, 835, pues 4835. 00:18:38
El siguiente número, XXXV, y tiene encima de esas cuatro letras una línea horizontal. 00:19:06
10 y 10, 20 y 10, 30, y 5, 35, multiplicado por 1.000, 35.000. 00:19:14
Y luego la D, la L, la I y la I, pues van de mayor a menor. 00:19:21
Pues sumo el valor de D, que es 500, la L que vale 50, y 2I es 1 y 1, 2. 00:19:26
En total 35.552. Y por último todo este pedazo de número que tiene encima de este grupo tan grande de letras pues una línea horizontal. Pues vamos a ver cuál sería este grupo de cifras y luego lo multiplicamos por mil. 00:19:33
La D, la C, la C, la L, la X, la X y la X van de mayor a menor, pero estas dos últimas no. 00:19:54
La Y va delante de la V, por lo tanto a la V le tengo que restar, al 5 le tengo que restar 1. 00:20:02
El resto de las anteriores lo sumo. 00:20:08
500 más C y C que serían 200, 700, la L que vale 50, 10, 10 y 10, 30, 50 y 30 sería el 80, 00:20:10
y 5 menos 1, 4, pues todo este grupo de cifras que tiene la línea horizontal encima es 784. 00:20:22
Y luego las que nos quedan, C y C que valen 100, pero la Y está delante de la X, 00:20:30
por lo tanto al 10 le tengo que restar 1. 00:20:37
100 y 100, 200, y 10 menos 1, 9, 209. 00:20:40
Por lo tanto, sería el número 784.000, 784 multiplicado por 1.000, 784.000, y 209. 00:20:45
A continuación, mando cuatro ejercicios y una reflexión. 00:20:57
Lo que tenéis que hacer es, para escribir los ejercicios y que podáis ver o escribirlo en el cuaderno, 00:21:04
Pues, pasáis el vídeo, cuando ya lo hayáis copiado, pues, andáis otra vez a la pausa o al play para que se siga reproduciendo, pasáis a los siguientes ejercicios, los vais haciendo en el cuaderno, los copiáis y los vais haciendo en el cuaderno, y, por último, pues, la reflexión. 00:21:09
Antes de pasar a la última hoja donde está esa que razonéis lo que sería verdad o mentira o una forma de escribir, fijaros que en este número, en este en concreto, hay aquí un grupo de cifras que no tiene una línea encima, sino que tiene dos. 00:21:33
cada vez que se pone una línea es multiplicar por mil 00:21:49
por lo tanto, si este sería el número X y la Y 00:21:53
que sería 10 y 1, 11 00:21:56
11 multiplicado una vez por mil sería 11.000 00:21:57
y otra vez por mil, pues 11.000 por mil serían 11 millones 00:22:01
este valor de aquí, como tiene dos líneas 00:22:07
sería multiplicar dos veces por mil 00:22:10
mil por mil es un millón 00:22:13
pues el 11 multiplicado por un millón, 11 millones 00:22:15
Y luego este grupo de cifras solo tiene una raya, pues el valor, ya no lo voy a decir, este valor de este grupo de cifras solo lo tendré que multiplicar por 1000. 00:22:18
Y el último ejercicio es de estas dos formas, ¿cuál pensáis que es la forma correcta de escribir el número 45? 00:22:30
Y tenéis que razonar o justificar por qué sería esa forma. 00:22:39
Bueno, pues estos cinco ejercicios los tenéis que copiar y hacerlos en el cuaderno. 00:22:43
Idioma/s:
es
Autor/es:
´José Félix Díaz Ramírez
Subido por:
Jose Félix D.
Licencia:
Dominio público
Visualizaciones:
200
Fecha:
22 de septiembre de 2020 - 16:15
Visibilidad:
Público
Centro:
IES CARPE DIEM
Duración:
22′ 51″
Relación de aspecto:
4:3 Hasta 2009 fue el estándar utilizado en la televisión PAL; muchas pantallas de ordenador y televisores usan este estándar, erróneamente llamado cuadrado, cuando en la realidad es rectangular o wide.
Resolución:
840x630 píxeles
Tamaño:
50.93 MBytes

Del mismo autor…

Ver más del mismo autor


EducaMadrid, Plataforma Educativa de la Comunidad de Madrid

Plataforma Educativa EducaMadrid