Activa JavaScript para disfrutar de los vídeos de la Mediateca.
Resolución de la ecuación de segundo grado
Ajuste de pantallaEl ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:
En este vídeo vamos a recordar cuál es la fórmula de la ecuación de segundo grado y vamos a resolver una ecuación de segundo grado de forma inmediata.
00:00:01
Por ecuación de segundo grado vamos a entender una del tipo ax al cuadrado más bx más c igual a cero,
00:00:11
donde a, b y c son los coeficientes del monomio de grado 2, de grado 1 y de grado 0.
00:00:21
Por supuesto que la expresión puede ser más compleja, con paréntesis, con denominadores, pero la expresión con la cual vamos a usar la fórmula debe ser de este tipo.
00:00:30
Así que la fórmula de la ecuación de segundo grado es x igual a menos b más menos raíz cuadrada de b al cuadrado menos 4 por a y por c, todo ello partido 2 por a.
00:00:38
Vamos a verlo con un ejemplo
00:01:00
Por ejemplo, la ecuación x al cuadrado menos 3x más 2 igual a 0
00:01:03
Vamos a resolverla aplicando la fórmula anterior
00:01:10
En primer lugar, debemos de reconocer quienes son los coeficientes
00:01:13
La a, que es el coeficiente del x al cuadrado, es 1
00:01:17
El coeficiente del término de grado 1, de la x, va a ser menos 3
00:01:21
Así que B es igual a menos 3
00:01:30
Mientras que el número que aparece sin término en X, el que tiene grado 0, es el 2
00:01:35
Así que C es igual a 2
00:01:40
Con estos tres números A, B y C
00:01:43
Podemos aplicar la fórmula que hemos visto con anterioridad
00:01:47
Así que simplemente va a ser sustituir en la fórmula de antes
00:01:51
Así tendremos que X va a ser igual a menos B
00:01:55
Como b es negativo, lo que vamos a hacer va a ser cambiarle el signo
00:02:00
En vez de menos 3, pondremos 3
00:02:05
Más menos raíz cuadrada de b al cuadrado menos 3 al cuadrado es 9
00:02:07
Este cuadrado siempre va a ser positivo
00:02:15
Ya que si la b es positiva, más por más es más
00:02:17
Mientras que si es negativa, negativo por negativo, positivo
00:02:21
Continuamos con menos 4ac
00:02:26
Pues menos 4 por a, que es 1, y por c, que es 2.
00:02:29
Todo ello partido 2 por a, 2 por 1.
00:02:36
Ahora vamos simplificando.
00:02:41
Así que tenemos que 3 más menos raíz cuadrada de 9 menos 4 por 1 y por 2 es 8.
00:02:43
Todo ello partido 2 por 1, 2.
00:02:52
Ahora ya el siguiente paso es realizar esa resta
00:02:54
9 menos 8, 1
00:02:59
Luego 3, más menos la raíz de 1 partido 2
00:03:00
Siguiente paso será calcular la raíz de 1
00:03:06
En este caso es muy sencilla, es 1
00:03:10
Así que es igual a 3 más menos 1 partido 2
00:03:12
Y aquí llegamos a la única cosa un poco novedosa
00:03:18
De esta fórmula que es el más menos
00:03:21
Este más menos lo que nos dice es que la ecuación de segundo grado puede tener como máximo dos posibles soluciones.
00:03:24
Una de ellas considerando la suma y la otra considerando la resta.
00:03:32
Así tendremos por un lado que una opción sería x igual a 3 más 1 partido 2, esto es 4 partido 2, o lo que es lo mismo, 2.
00:03:40
2 sería una solución. La otra, que será considerando el signo menos, será 3 menos 1 partido de 2, o lo que es lo mismo, 2 partido de 2, que es 1.
00:03:52
Así, esta ecuación de segundo grado tiene dos soluciones. Una es x igual a 2 y la otra es x igual a 1.
00:04:10
- Autor/es:
- Diego Redondo
- Subido por:
- Diego R.
- Licencia:
- Reconocimiento - No comercial - Compartir igual
- Visualizaciones:
- 110
- Fecha:
- 30 de noviembre de 2018 - 23:26
- Visibilidad:
- Público
- Centro:
- CEPAPUB SIERRA NORTE
- Duración:
- 04′ 19″
- Relación de aspecto:
- 1.62:1
- Resolución:
- 584x360 píxeles
- Tamaño:
- 4.75 MBytes