MRU - Contenido educativo
Ajuste de pantallaEl ajuste de pantalla se aprecia al ver el vídeo en pantalla completa. Elige la presentación que más te guste:
Bueno, vamos a empezar la unidad 7 y la unidad 8, que están unidas porque el movimiento rectilíneo uniforme y el movimiento rectilíneo uniformemente agelerado.
00:00:00
Dejamos la química de lado y nos metemos un poco en el movimiento, la física, pero muy básica, movimientos muy básicos, ¿vale?
00:00:13
o sea, no os preocupéis que no va a ser nada complicado, es un poco como en el nivel 1, vemos la aceleración pero en problemas muy básicos, ¿vale?
00:00:23
O sea, que tranquilos que no...
00:00:38
El contenido, qué es una magnitud escalar y qué es una magnitud vectorial,
00:00:42
el movimiento y cuáles son los elementos cinemáticos,
00:00:47
los tipos de movimientos que hay y los movimientos de especial interés,
00:00:50
que para nosotros es el movimiento rectilíneo uniforme,
00:00:58
que es siempre el mismo, con la misma velocidad, no lleva aceleración,
00:01:02
y el movimiento rectilíneo uniformemente acelerado.
00:01:06
Vamos a ver las fórmulas de la velocidad y las fórmulas de la aceleración
00:01:09
y en eso se van a basar los problemas, ¿vale?
00:01:15
O sea, no va a haber más.
00:01:18
¿Con patilífero?
00:01:19
Sí.
00:01:20
Entonces, lo primero que tenemos que saber es diferenciar entre una magnitud vectorial y una magnitud escalar.
00:01:22
Las magnitudes escalares, ¿cuáles son? Las que tienen un valor y se dice solo, por ejemplo, los kilos, o sea, yo peso, no voy a decir mi peso, 200 kilos, ¿vale?
00:01:29
No lleva un sentido, no lleva una dirección, solo es el número y la unidad en la que los peso.
00:01:45
Esas serían las magnitudes escalares, ¿vale?
00:01:54
¿Cuánto mido? Un 80, ¿vale? Un metro, 80 centímetros.
00:01:59
Yo solo estoy dando un valor y una magnitud, ya está.
00:02:05
No estoy dando ni en qué sentido, ni velocidad, porque no puedo darlo, ¿vale?
00:02:09
Esas serían las magnitudes escalares.
00:02:14
Luego tenemos las magnitudes vectoriales.
00:02:17
En estas tienen cantidad, tienen dirección y tienen sentido, ¿vale?
00:02:19
¿Cómo las vamos a representar? Con vectores.
00:02:26
Ahora os enseño cómo se representa el vector, ¿vale? Es facilísimo.
00:02:29
Pero, por ejemplo, en la velocidad, yo digo voy a 20 km por hora, ¿no?
00:02:33
Estoy dando un valor y estoy dando en qué lo estoy midiendo.
00:02:39
Pero es que luego normalmente decimos dirección o sentido, porque si no, ¿hacia dónde vas?
00:02:43
Tenemos que ubicar bien ese valor, ¿vale?
00:02:51
No podemos confundir lo que es la dirección de lo que es el sentido.
00:02:55
Es verdad que hablando los utilizamos de manera indistinta, pero no es lo mismo la dirección que el sentido.
00:02:59
Dirección sería Madrid-Valencia, que es la misma dirección.
00:03:06
Madrid-Valencia, Valencia-Madrid, es la misma dirección, yo llevo un recorrido.
00:03:11
Sentido es, si yo voy de Madrid a Valencia, voy sentido Madrid-Valencia.
00:03:15
Y el sentido contrario sería, ¿no? De Valencia a Madrid, ¿vale?
00:03:21
Eso es importante en los vectores, porque me van a indicar el comienzo y el final de ese vector.
00:03:25
El inicio, que normalmente lo ponemos en el 0,0
00:03:32
Y luego el otro punto me va a indicar el sentido hacia donde va
00:03:36
¿Vale?
00:03:41
Con esto que quiero decir, si yo tengo
00:03:42
Bueno, lo voy a poner en la pizarra porque si no
00:03:44
Si yo tengo mi eje de coordenadas
00:03:48
Y tengo mi vector
00:04:00
¿No?
00:04:03
Este será el principio
00:04:06
Y este será el final
00:04:08
yo tendré que medir cuánto mide, decir cuánto mide, cuál es el inicio y cuál es el final, ¿sí?
00:04:09
Este vector no es el mismo que este, tienen el mismo tamaño, tienen la misma dirección, pero el sentido es contrario, ¿vale?
00:04:19
Entonces hay que indicar en los vectores módulo, o sea, cuánto mide, dirección, que sería esta dirección para los dos, y sentido me lo indica hacia dónde va el pico de la flecha, ¿vale?
00:04:31
Eso sería en las magnitudes vectoriales.
00:04:51
¿Qué magnitudes vectoriales vamos a utilizar? Pues la fuerza, porque yo cuando digo voy a empujar esta mesa,
00:04:58
hombre, no se dice normalmente, pero en física utilizas una fuerza de 5 newtons,
00:05:07
pero no es lo mismo empujar para acá que empujar para acá.
00:05:13
Siempre tengo que decir hacia dónde estoy haciendo la fuerza para saber si el objeto se va a mover o hacia dónde se va a mover.
00:05:17
Lo mismo pasa con la velocidad, con el desplazamiento, con la aceleración, todas esas son magnitudes vectoriales, ¿vale?
00:05:25
Esto es un poco más de lo mismo. Aquellas que quedan completamente definidas con un valor, con un número y las unidades que utilizamos de medida, pues son las magnitudes escalares, ¿vale?
00:05:41
Las vectoriales, las que tengo que indicar, aparte del número, hacia dónde va, en qué sentido y en qué dirección, ¿sí?
00:05:57
Tenéis la masa, el tamaño, el tiempo como magnitudes escalares y como magnitudes vectoriales, la fuerza, la aceleración, la velocidad, ¿vale?
00:06:09
Esto os lo dejo en el aula virtual, ¿vale? Aunque haya apuntes, también os dejo la presentación.
00:06:22
Las magnitudes físicas que nos tenemos que saber y que tenemos que saber en el sistema internacional,
00:06:28
¿cómo se miden? Son estas, la longitud, la vamos a medir en metros,
00:06:35
la masa que la vamos a medir en kilogramos, el tiempo en segundos, la temperatura en grados Kelvin,
00:06:42
la intensidad de corriente que eso lo veremos más adelante en amperios,
00:06:48
la cantidad de sustancia, los moles, que ya los hemos visto, y la intensidad luminosa, la candela.
00:06:52
Ya sabéis que siempre intentamos pasar al sistema internacional para tener las medidas siempre así.
00:06:59
Y yo siempre os recomiendo que lo primero que hagáis es pasar al sistema internacional.
00:07:08
¿Por qué? Porque luego podemos liarnos y yo te pido metros por segundo
00:07:12
y tú tienes el tiempo en segundos, pero la distancia la tienes en kilómetros
00:07:17
y me das kilómetros segundos, no metros por segundo.
00:07:23
Entonces siempre lo primero que hacemos es pasar unidades al sistema internacional
00:07:27
y luego ya con las fórmulas pues vamos haciendo, ¿vale?
00:07:32
Esto es lo que os decía de los elementos de un vector.
00:07:40
Un vector viene definido por un módulo, una dirección, un sentido, un punto de aplicación y unas coordenadas
00:07:42
¿Sí?
00:07:51
Un vector es el verde
00:07:53
Lo que está dibujado en verde, ¿vale?
00:07:57
El módulo, ¿qué indica? El tamaño del vector, ¿cuánto mide? La longitud del segmento que tiene mi vector, ¿vale? La dirección es la recta que contiene a mi vector, toda la recta que contiene a mi vector, esa es la dirección del vector.
00:08:01
El sentido, la orientación, el piquito de mi flecha, ¿vale? Ese sería el sentido que tiene mi vector.
00:08:24
No es lo mismo que la flecha me indique para acá, que me indique para acá. Entonces eso lo tengo que indicar.
00:08:35
¿Cómo lo indico? Pues sabiendo punto de aplicación, el punto del origen y el punto final. Así lo indico.
00:08:43
Yo aquí diría, este vector, por ejemplo, si este es el punto 0 y este es el punto A, el vector sería, ese sería mi vector, ¿vale?
00:08:51
Origen en O y final en A.
00:09:38
Entonces ese sería mi vector
00:09:42
El vector contrario
00:09:44
De sentido contrario
00:09:45
Misma dirección, mismo módulo
00:09:47
Pero sentido contrario
00:09:49
A O
00:09:50
¿Vale?
00:09:54
Pero porque el pico de la flecha
00:09:57
Estaría aquí
00:10:00
Entonces mi origen estaría en A
00:10:02
Y el final
00:10:04
El sentido me indicaría hacia O
00:10:05
¿Y la flecha que has puesto arriba de A O?
00:10:07
Eso es como se indica un vector
00:10:10
No habría que ponerla así para allá
00:10:12
No, no, porque yo estoy diciendo que A es el comienzo y O es el final, ¿vale?
00:10:14
Los vectores siempre se ponen con una flechita arriba y lo que me está diciendo es origen y fin, ¿vale?
00:10:20
Entonces yo con decir esto aquí, si yo te digo este vector y te hago un dibujo,
00:10:31
tú tendrías que saber, o sea, y te pongo solo los puntos,
00:10:37
tú tendrías que dibujarme la flecha porque este es el origen y este es el final, ¿vale?
00:10:40
Y la flecha siempre indica hacia la derecha.
00:10:46
¿Hacia la derecha? Sí.
00:10:50
Derecha mirando a nuestra derecha, ¿vale?
00:10:52
¿Esto queda claro? Esto es importante, ¿vale?
00:10:56
Es importante porque los vectores los vamos a utilizar con las fuerzas también
00:10:59
y tenemos que tener claro cuál es el origen y cuál es el final.
00:11:04
y con saber origen y final ya puedo indicar el sentido.
00:11:09
La dirección va a ser la misma, pero el sentido es importante
00:11:13
porque puede ser opositiva o negativa la fuerza, ¿vale?
00:11:17
O la velocidad, o la aceleración.
00:11:20
Una aceleración negativa es frenar, ¿vale?
00:11:23
Entonces, si digo que me la dibujéis,
00:11:26
pues tenéis que saber hacia dónde va ese vector, ¿vale?
00:11:30
¿Vale?
00:11:34
vale
00:11:34
un cuerpo
00:11:41
esto parece perogruyo
00:11:43
como dice mi padre
00:11:45
pero un movimiento
00:11:46
o sea un cuerpo está en movimiento
00:11:49
cuando su posición varía
00:11:51
¿no? pero varía con respecto
00:11:52
a qué
00:11:55
a un punto fijo
00:11:55
¿vale? para que haya
00:11:59
para que se perciba movimiento
00:12:02
tiene que haber un punto fijo del que parto y plantearme el movimiento.
00:12:05
Si yo voy en un tren sentada, sentadita, veo pasar la calle,
00:12:11
¿qué me estoy moviendo, yo o la calle?
00:12:20
Pero depende de mi visión cuando digo, se me aleja el horizonte, ¿no?
00:12:25
En realidad me estoy moviendo yo, pero lo que se está moviendo,
00:12:29
porque mi referencia como punto fijo soy yo, ¿vale?
00:12:32
Depende del punto fijo.
00:12:35
Claro, entonces, para estudiar el movimiento hay que definir siempre un sistema de referencia, ¿vale?
00:12:36
Un sistema de coordenadas y siempre el punto de inicio va a ser en el eje de coordenadas cartesianas
00:12:42
el punto 0,0, ese va a ser mi eje de coordenadas y mi punto de inicio, ¿vale?
00:12:48
Consideramos este punto fijo y se moverán los cuerpos dependiendo de si modifican o no su posición con respecto a este punto fijo, ¿vale?
00:12:54
Eso es importante, cuando yo estoy quieta se mueve el resto, yo soy la referencia, ¿vale?
00:13:07
Pero si estoy fuera, si estoy en el campo y pasa el tren, el que se está moviendo es el tren, ¿vale?
00:13:15
O sea, eso es cómo sería, cómo ubicar mi punto de coordenadas cartesianas para ver cómo se modifica el movimiento a lo largo del tiempo.
00:13:23
Estos son los ejes de coordenadas.
00:13:36
Se supone que esto lo tenéis que controlar perfectamente, ¿vale?
00:13:40
El 0, 0, ¿cuál es el cuadrante positivo? ¿Cuál es el cuadrante negativo? ¿Cuál es? ¿Vale?
00:13:46
X positivas aquí y negativas para arriba.
00:13:57
X, Y.
00:14:02
X negativas y positivas.
00:14:05
O sea, si yo ahora mismo, por ejemplo, os pongo el punto A que está ubicado en el 3, 4
00:14:09
El punto B que está ubicado en el menos 3, 2
00:14:28
El punto C que está en el menos 3, menos 3
00:14:34
Y el punto D que está en el 3, menos 1
00:14:39
El punto A, pues 1, 2, 3, 1, 2, 3 y 4
00:14:45
Este sería mi punto A
00:14:58
En el 3 de la X y en el 4 de la Y
00:15:03
El punto B, menos 3, X menos 3, menos 1, menos 2, menos 3
00:15:07
Y en la Y, 2
00:15:15
Este sería mi punto B
00:15:16
¿No?
00:15:19
Menos 3 de X
00:15:21
2 de Y
00:15:23
El primero siempre es X
00:15:24
El que indico
00:15:26
Y el segundo es la Y
00:15:27
¿Vale?
00:15:30
¿Bien?
00:15:32
El C
00:15:33
Menos 3, menos 3
00:15:34
O sea, me está diciendo que los dos son negativos
00:15:35
La X negativa y la Y negativa
00:15:38
Menos 3 de X
00:15:40
Menos 3
00:15:43
de I, esta es la C
00:15:45
¿vale?
00:15:49
y el 3 menos 1
00:15:51
1, 2, 3
00:15:53
menos 1
00:15:54
este sería la D
00:15:56
¿vale? esto lo tenéis
00:15:58
que practicar y controlar
00:16:00
como
00:16:03
o sea
00:16:03
yo os lo recuerdo
00:16:06
pero se supone que lo deberíais de saber
00:16:09
¿vale? los ejes de coordenadas
00:16:10
tenéis que saber como
00:16:12
se ubican los puntos
00:16:14
¿vale? también os puedo decir ahora
00:16:16
indícame el vector
00:16:18
AB
00:16:20
el vector
00:16:25
BA
00:16:27
el vector
00:16:29
BC
00:16:30
y el vector
00:16:32
DA
00:16:35
el vector AB
00:16:36
será este
00:16:43
con la flecha indicando
00:16:45
hacia B, porque me está diciendo
00:16:48
origen
00:16:50
destino, ¿vale?
00:16:51
el vector BA
00:16:54
pues será el contrario
00:16:55
el vector BC
00:16:58
de B a C
00:17:00
y la punta
00:17:02
me indica el C
00:17:04
¿sí?
00:17:06
y el vector DA
00:17:07
ese sería mi vector
00:17:09
¿vale?
00:17:15
¿este puede ser uno de los ejercicios?
00:17:18
esto es lo más básico que os puedo pedir
00:17:20
digo porque mola
00:17:22
Esto es lo más básico que os puedo pedir, que sí que puede ser una pregunta con varias preguntas para que controléis lo que es el módulo, lo que es el sentido, lo que es la dirección, ¿vale?
00:17:22
También os puedo decir, ¿qué módulo tiene de A comparado con AD? Pues es el mismo. ¿Y la dirección? La misma. ¿El sentido? Contrario.
00:17:36
¿Vale? O sea, se pueden hacer un montón de preguntas para intentar pillar para que controléis el S
00:17:50
Pero por favor, los ejes de coordenadas, controlarlos
00:17:58
El positivo, este es positivo
00:18:02
Este es positivo-negativo
00:18:05
Este es negativo-negativo
00:18:09
Y este es positivo-negativo
00:18:12
¿Vale?
00:18:14
¿La flecha de la letra segunda es al revés?
00:18:15
No
00:18:18
Si te la pongo al revés es porque te estoy diciendo al contrario el módulo, hacia dónde va el sentido, ¿vale?
00:18:18
O sea, el piquito de la flecha, mi flecha me indica hacia dónde va el vector.
00:18:32
Yo siempre te voy a poner el vector así, ¿vale?
00:18:40
Este es el origen y ese es el final, ¿vale?
00:18:43
Practicar en casa
00:18:47
Poner puntos en un eje de coordenadas
00:18:49
¿Vale?
00:18:52
Lo tenéis que practicar porque en matemáticas
00:18:53
También lo vais a tener seguramente
00:18:55
Las coordenadas
00:18:58
Y vais a tener que controlar
00:18:59
Las x positivas, las x negativas
00:19:01
Y no dudar en esas cosas
00:19:04
Que por una tontería de esas
00:19:05
Podéis fallarla, ¿vale?
00:19:07
Pero es facilísimo
00:19:09
No desveles
00:19:11
Vale, elementos cinemáticos
00:19:19
¿Qué elementos voy a tener que conocer del movimiento?
00:19:25
Pues voy a tener que conocer la posición, ¿no?
00:19:29
Dónde está ubicado el punto
00:19:33
¿Qué trayectoria ha seguido?
00:19:34
¿Qué espacio ha recorrido?
00:19:37
¿Y cuánto se ha desplazado?
00:19:40
¿Vale?
00:19:42
Vamos a, antes de, antes de verlo
00:19:43
Os voy a decir, yo estoy aquí, ¿no?
00:19:46
Estoy aquí ubicada y ahora me voy aquí. He recorrido este espacio, ¿no? Pero puedo recorrerlo por aquí, ¿no? Puedo recorrerlo por detrás de vosotros y llegar al mismo punto, ¿no?
00:19:49
Estoy haciendo diferentes recorridos y estoy dibujando diferentes trayectorias.
00:20:12
Lo que es lo mismo es cuánto me he desplazado, ¿no?
00:20:20
Porque el desplazamiento es la medida que hay desde el punto donde estoy, en línea recta, hasta el punto en el que termino.
00:20:26
Ese es el desplazamiento, que no es lo mismo que el espacio que he recorrido.
00:20:35
Podré desplazarme lo mismo recorriendo mucho más o menos
00:20:40
Si lo hago en línea recta, ¿vale?
00:20:46
Eso es lo que quiero que tengáis claro
00:20:48
La posición es el lugar del espacio donde se encuentra el móvil en cada instante de tiempo
00:20:50
Ahí yo os puedo decir
00:20:56
Un coche sale de Madrid y a las 3 horas para en un área de servicio
00:20:58
Descansa media hora y continúa
00:21:06
¿En qué posición está? A las 3 horas. Pues a las 3 horas está en esta posición, ha recorrido esta distancia y ha ido a esta velocidad.
00:21:10
Después de esa media hora sigue en la misma posición, pero cuando pase otros 20 minutos ya estará en movimiento y tendrá otra posición, ¿vale?
00:21:19
Eso me indica la posición y lo digo a partir de las coordenadas, a partir de los ejes, ¿vale?
00:21:29
Luego está la trayectoria.
00:21:36
Lo que os he dicho, yo puedo ir desde mi mesa hasta el mapa dibujando diferentes trayectorias.
00:21:38
Puedo ir en línea recta, puedo ir haciendo curva, puedo pasar por debajo de las mesas.
00:21:44
Hay muchas maneras de llegar al mismo punto.
00:21:50
El espacio recorrido, pues es la distancia en medir por donde he ido.
00:21:53
Voy midiendo los metros, kilómetros, centímetros que me he desplazado, ¿vale?
00:21:59
y el desplazamiento es la distancia en línea recta.
00:22:05
Yo voy de aquí a mi mesa, o sea, estoy aquí y luego estoy en mi mesa.
00:22:11
Mi desplazamiento es en línea recta estos metros.
00:22:18
Primero estaba aquí y luego he estado allí.
00:22:22
Me da igual por dónde haya ido, me da igual qué camino haya seguido.
00:22:25
Estoy aquí, me he desplazado, ¿qué? ¿Un metro y medio?
00:22:29
¿No? Si estoy aquí y hay un metro y medio.
00:22:33
Pero si te digo qué espacio he recorrido, tú me tendrás que decir, ¿y por dónde has ido?
00:22:35
Porque desplazarte te has desplazado un metro y medio, pero no es lo mismo ir así que ir así.
00:22:43
Así he recorrido muchísimo más espacio que yendo en línea recta.
00:22:52
Entonces cuidado con eso, no es lo mismo espacio recorrido que desplazamiento.
00:22:57
Bien, las trayectorias pueden ser rectilíneas, curvilíneas, irregulares
00:23:01
¿Vale? Ya lo sabemos, por las carreteras
00:23:08
Tú puedes ir un tren, por ejemplo, lo normal es que vaya en línea recta
00:23:11
Pero también tiene momentos de un poco curvilíneo
00:23:15
¿Vale? Las carreteras, pues hay irregulares, hay rectas, hay de todo
00:23:19
Entonces, la trayectoria me va a indicar qué tipo va a ser, rectilíneo, curvilíneo y regular.
00:23:25
Esto es lo que hemos visto antes, con un ejemplo del Tour de Francia.
00:23:34
Yo salgo del punto número 1 y tengo que llegar al punto número 2 subiendo el Tourmalet, por ejemplo,
00:23:39
que es el único que me sale que suban, que ya no sé ni si lo suben.
00:23:46
Entonces, el espacio recorrido irá por esas montañas que ha tenido que subir el ciclista, pero ¿cuánto se ha desplazado? Pues desde que salió a las 9 de la mañana desde Lyon y llega a París,
00:23:50
No sé, me he pasado de distancia, ¿no? Para un poco de matado al ciclista. Pues ha recorrido esa distancia en línea recta, pero a lo mejor ha hecho mil kilómetros, yo qué sé, ¿vale? O sea que cuidado con lo que es el espacio recorrido, el desplazamiento, ¿sí?
00:24:11
Esto es lo mismo
00:24:30
¿Vale? Es exactamente lo mismo
00:24:36
Lo he puesto en varios ejemplos para que no haya dudas en eso
00:24:39
¿Vale? ¿Qué elementos cinemáticos vamos a estudiar?
00:24:45
Pues vamos a estudiar la aceleración y la velocidad
00:24:50
¿Vale? Como hemos dicho son magnitudes físicas vectoriales
00:24:52
Y ahora vamos a hablar de móviles
00:24:57
siempre, en vez de decir un cuerpo, se desplaza, vamos a decir, un móvil, ¿vale?
00:25:00
Porque están en movimiento, en física se habla de móviles, ¿vale?
00:25:09
Un móvil quedará totalmente definida cuando se determine en cada instante de tiempo
00:25:14
su módulo, la dirección y el sentido, ¿vale?
00:25:21
Que tienen las dos, la velocidad y la aceleración.
00:25:25
Vale, velocidad, vamos a empezar con la velocidad porque hoy es movimiento rectilíneo uniforme, movimiento rectilíneo uniforme significa que desde que empiezo hasta que acabo llevo la misma velocidad.
00:25:30
Yo salgo de Madrid y voy a Valencia a 120 km por hora, planto al coche a 120 km por hora y voy, no modifico velocidad, movimiento rectilíneo uniforme, ¿vale?
00:25:52
Si voy acelerando o frenando, movimiento rectilíneo uniformemente, ¿vale?
00:26:10
Pero eso lo vamos a ver la semana que viene, ahora vamos a ver el movimiento rectilíneo y la semana que viene es muy poquito lo del movimiento rectilíneo uniformemente acelerado, haremos problemas, ¿vale? Para dejarlo clavado.
00:26:17
Entonces, la velocidad es la magnitud física que indica el espacio recorrido por un móvil por unidad de tiempo.
00:26:32
Yo lo digo, ya lo estamos diciendo.
00:26:41
Voy a 120 km por hora.
00:26:44
¿Eso qué significa?
00:26:46
Pues que en una hora he recorrido 120 km.
00:26:48
¿Ya está?
00:26:52
Con eso ya me está diciendo cuál es la fórmula de la velocidad.
00:26:53
No me la tengo que saber.
00:26:58
Si a mí me dicen, que todos hablamos así, ¿no? Mi coche va a 80 kilómetros por hora, ¿no?
00:27:02
La velocidad de mi coche son 80 kilómetros partido de hora, ¿no?
00:27:09
Si me quito los números, voy a quitar los números, ¿a qué es igual la velocidad?
00:27:22
¿Qué son kilómetros?
00:27:30
¿Eh?
00:27:32
Espacio, ¿vale?
00:27:34
¿Qué es la hora?
00:27:37
Tiempo
00:27:42
Pues la velocidad es igual
00:27:42
Al espacio partido de tiempo
00:27:48
Llámese la fórmula
00:27:49
La única fórmula
00:27:54
Que vamos a utilizar, llámela sé
00:27:55
No me tengo que aprender nada
00:27:57
Porque es que
00:27:59
Es un término que utilizamos
00:28:01
Constantemente nosotros, lo de la velocidad
00:28:03
¿Vale?
00:28:05
Luego sí que voy a tener que aprender a despejar, pero para eso está el maravilloso triángulo que vale para todo, si me cuesta despejar, ¿vale?
00:28:06
¿Vale? Velocidad abajo, distancia, partido de tiempo. Me da igual que pongáis D de distancia, E de espacio, X, me da igual, ¿vale? Con que me indiquéis que eso es el espacio que recorre la distancia, ¿vale?
00:28:20
Entonces, ¿a qué es igual?
00:28:38
Hemos dicho que la velocidad es igual a la distancia a partir del tiempo
00:28:43
Me lo dice la fórmula, no necesito aprendérmela de memoria
00:28:47
Ya con acordarme de la velocidad que llevo a mi coche
00:28:51
Ya me acuerdo de la fórmula
00:28:55
¿A qué es igual la distancia?
00:28:58
Pues la distancia es igual a la velocidad por el tiempo
00:29:02
Están en la misma línea, las igualo
00:29:05
esto es un por
00:29:07
y esto es división
00:29:09
¿vale?
00:29:11
acordaros de esto
00:29:13
lo del triángulo lo pongo yo para haceros lo
00:29:14
pero que no os lo tenéis que aprender
00:29:17
si os lo sabéis de otra manera
00:29:18
a mi no me da nada
00:29:20
digamos que los problemas serían
00:29:22
despejar
00:29:25
como los tres triángulos
00:29:26
el problema de estos problemas
00:29:28
es saber leer
00:29:31
el problema
00:29:33
lo que me están preguntando
00:29:35
No la fórmula, porque la fórmula, y no equivocarse despejando, ¿vale?
00:29:36
Ni haciendo cambios de unidades, ¿sí?
00:29:42
Vale, entonces, el espacio o la distancia recorrida es igual a la velocidad por tiempo,
00:29:46
la velocidad es la distancia a partir del tiempo, y el tiempo es la distancia a partir de la velocidad.
00:29:53
Todo eso sacado de la misma fórmula, que yo no me tengo que aprender, que ya me la sé.
00:30:01
Velocidad que es igual a distancia partido del tiempo
00:30:06
¿Vale?
00:30:09
¿Cómo?
00:30:14
Lo vamos a medir en el sistema internacional
00:30:15
¿En qué va a ir la velocidad?
00:30:24
En metros por segundo
00:30:29
¿Vale? Cuidado con eso
00:30:31
La velocidad siempre va a ir en metros por segundo
00:30:33
Yo te puedo decir en el problema
00:30:37
Pásala kilómetros ahora
00:30:40
¿Vale? Te lo puedo pedir
00:30:42
Pero tú tienes que ponerla siempre en metros por segundo
00:30:45
Porque las demás unidades siempre van a ir en el sistema internacional
00:30:49
Entonces no podemos mezclar unidades
00:30:54
Una vez que tengamos el resultado ya hacemos los cambios que queramos
00:30:56
Pero lo primero que hacemos siempre es pasar al sistema internacional
00:31:01
Distancias, metros
00:31:05
Tiempo, segundos
00:31:08
Velocidad, metro partido segundo
00:31:10
¿Vale?
00:31:14
Esto es lo que
00:31:16
Existen otras unidades de velocidad
00:31:19
Porque yo no digo
00:31:22
Voy de Madrid a Valencia a 2 metros por segundo
00:31:23
Digo a 120 kilómetros por hora
00:31:26
Entonces existen otras unidades de medida
00:31:29
Que también se pueden utilizar
00:31:33
Pero tenemos que cambiarlas
00:31:34
por los factores de conversión que vimos, ¿vale?
00:31:37
Si lo sabéis cambiar de otra manera, ya sabéis que no tengo problema.
00:31:40
Se supone que no debéis utilizar reglas de 3,
00:31:45
se supone que no se deben utilizar reglas de 3,
00:31:49
que se tienen que utilizar los factores de conversión, ¿vale?
00:31:51
Aquí me dice 35 metros por segundo que lo pase a kilómetros por hora, ¿vale?
00:31:55
Me decís que el resultado del problema es que el coche va a 35 metros por segundo, yo te digo, vale, pero pásamelo a kilómetros hora, ¿vale? Pues entonces tienes que poner en un kilómetro mil metros abajo lo que quiero quitar, acordaros, si lo que quiero quitar son los metros abajo lo que quiero quitar y si los segundos están aquí, pues los segundos arriba para quitar segundos con segundos.
00:32:00
En una hora hay 3600 segundos, en un kilómetro hay 1000 metros. Despejo, quito los metros, a ver, quito metro, quito metro, quito segundo, quito segundo y ya hago esa división y me sale que son 126 kilómetros por hora, ¿vale?
00:32:29
Tenéis varios ejemplos aquí para saber cómo hacerlo, ¿vale?
00:32:50
Que os he puesto bastantes ejemplos para que los hagáis en casa, ¿vale?
00:32:57
Igual, me dicen 72 kilómetros hora, la velocidad del vehículo es 72 kilómetros hora
00:33:04
y tarda 3 horas en llegar, ¿qué distancia ha recorrido?
00:33:12
¿Vale?
00:33:18
Pues entonces tendrías que pasar los kilómetros hora
00:33:20
A metros por segundo
00:33:22
El tiempo que ha tardado a segundos
00:33:23
Y luego darme esa velocidad
00:33:26
Y luego darme esa distancia en metros
00:33:27
¿Las distancias se dan en metros?
00:33:30
¿Tú dices he andado dos mil metros?
00:33:32
No
00:33:35
Dices dos kilómetros
00:33:36
Pero yo os voy a pedir en el examen
00:33:38
En qué unidad me tenéis que dar el resultado
00:33:40
¿Vale?
00:33:43
Si os digo sistema internacional, metros
00:33:43
si te digo, pásamelo a kilómetros
00:33:45
que seguramente sea lo que sea
00:33:48
que os pida primero el resultado y luego
00:33:50
pásalo a kilómetros
00:33:52
¿vale? o sea que tenéis que controlar muy bien
00:33:53
los cambios de unidades
00:33:56
¿vale? ese es el problema que vamos a tener
00:33:57
en estos problemas
00:33:59
que no es problema porque seguro
00:34:02
que lo controláis perfectamente
00:34:04
¡eh! que es muy fácil
00:34:06
¿no?
00:34:09
Vale, la aceleración la vamos a dejar para la semana que viene
00:34:10
Lo tengo puesto en el mismo PDF que os lo voy a subir
00:34:18
Pero la aceleración la voy a dejar para la semana que viene
00:34:23
Por el movimiento rectilíneo uniformemente acelerado
00:34:26
Los tipos de movimiento
00:34:29
Pues lo que hemos visto
00:34:32
Los móviles no siempre se mueven de la misma manera
00:34:34
Una noria no se mueve de la misma manera que un tren, uno es movimiento circular y el otro es movimiento rectilíneo.
00:34:37
Vamos a estudiar los dos tipos de movimiento con trayectoria recta, el movimiento rectilíneo uniforme y el movimiento rectilíneo uniformemente acelerado.
00:34:45
El movimiento rectilíneo uniforme, se habla del movimiento rectilíneo uniforme cuando la trayectoria de un móvil es recta
00:34:56
Y la velocidad no varía en el tiempo
00:35:04
Vamos, que se mantiene constante
00:35:07
Llamamos al movimiento
00:35:10
Movimiento rectilíneo uniforme
00:35:11
Lo vais a ver como MRU
00:35:14
¿Vale?
00:35:16
Y en este movimiento
00:35:17
Se realizan desplazamientos iguales
00:35:19
En tiempos iguales
00:35:21
O sea, yo en 5 segundos
00:35:23
Recorro lo mismo
00:35:25
Los primeros 5 segundos
00:35:26
Que los segundos 5 segundos
00:35:28
Que los terceros 5 segundos
00:35:29
Recorro el mismo espacio
00:35:31
No he acelerado
00:35:32
no he cambiado mi velocidad, no he frenado, así que a cada intervalo de tiempo voy a recorrer el mismo espacio, ¿vale?
00:35:34
En el primer segundo voy a recorrer 5 metros, en el segundo voy a recorrer otros 5 metros, así todo el rato.
00:35:45
Aquel que ocurre en línea recta y a velocidad constante, ¿vale?
00:35:58
Y para este movimiento vamos a utilizar la fórmula que hemos visto.
00:36:03
La velocidad es igual a la distancia partida del tiempo.
00:36:10
Esa es la única fórmula que os tenéis que saber.
00:36:15
¿Vale?
00:36:20
Y que no os la tenéis que saber porque ya la sabéis.
00:36:21
O sea, es algo que lo tenemos...
00:36:25
Será de las cosas más fáciles que haya en este nivel.
00:36:26
otra vez las fórmulas
00:36:33
como despejamos
00:36:37
los triángulos
00:36:39
hacerlos mil veces
00:36:42
porque a mi me da una rabia
00:36:43
que me despejéis mal
00:36:46
o sea, es que
00:36:48
porque
00:36:49
no se os puede poner nada
00:36:50
porque si está mal despejada la ecuación
00:36:54
es que sale mal
00:36:56
¿vale?
00:36:57
entonces, practicarlo
00:37:00
Vale, un barco recorre la distancia que separa Gran Canaria de Tenerife, y me dice que son 90 kilómetros, ¿vale?
00:37:02
En 6 horas, ¿cuál es la velocidad del barco en kilómetros hora y en metros por segundo?
00:37:12
Vale, lo primero que tengo que hacer, ¿qué me está diciendo, qué me está pidiendo y qué me está dando?
00:37:18
Un barco recorre la distancia que separa Gran Canaria de Tenerife, 90 kilómetros.
00:37:25
O sea, distancia, la D, el espacio recorrido, ¿cuánto es?
00:37:30
90 kilómetros.
00:37:37
Distancia recorrida, 90 kilómetros.
00:37:39
¿Vale?
00:37:43
En 6 horas, tiempo empleado, 6 horas.
00:37:45
¿Qué me está pidiendo?
00:37:50
Velocidad.
00:37:51
Podéis hacer un cuadro, podéis lo que sea.
00:37:53
Poneros los datos siempre en el problema.
00:37:56
Porque si no, luego vienen los líos de qué me está pidiendo, qué no me está pidiendo, qué me está dando.
00:37:59
Siempre, como en los anteriores, los datos que tengo y luego ya las fórmulas.
00:38:05
Como la ley de Ojasen casi.
00:38:10
¿Todo?
00:38:11
Sí, es parecido. Por eso me está dando muy bien.
00:38:12
¿Todo? O sea, yo siempre os recomiendo que los problemas os pongáis en vuestro...
00:38:14
Me da igual a la derecha o a la izquierda, donde lo veáis, qué datos os dan y qué os piden.
00:38:19
Y entonces ya sabéis como... ¿Me habla de aceleración? No. O sea, es un movimiento rectilíneo uniforme, no me ha hablado ni de que haya acelerado, ni de que haya frenado, ni nada.
00:38:24
Pues entonces voy a utilizar la fórmula de la velocidad es igual a la distancia partida por el tiempo. ¿Vale?
00:38:39
¿Qué hago lo primero? Me lo voy a pasar al sistema internacional, ¿vale? Entonces, los 90 kilómetros son 9.000 metros, yo os lo he hecho ahí por factores de conversión, me podéis poner 9.000 metros, no me hace falta que me hagáis el factor de conversión, ¿vale?
00:38:46
Las 6 horas, pues lo mismo, la pasamos a segundos, en 6 horas hay 21.600 segundos, ¿vale? Una vez que lo tengo pasado al sistema internacional, pongo la fórmula, velocidad impongo la fórmula, no pongo el punto entero si no está puesta la fórmula, ¿vale?
00:39:05
Velocidad es igual a la distancia partido del tiempo
00:39:31
¿Qué distancia he recorrido?
00:39:34
9.000 metros
00:39:36
¿En cuánto tiempo?
00:39:38
En 21.600 segundos
00:39:39
¿Qué velocidad he recorrido?
00:39:41
4,16 metros por segundo
00:39:45
Pero si pides
00:39:47
El resto de
00:39:55
Sensibilidad, velocidad y demás
00:39:57
Habría que cambiarlo igual
00:39:59
O sea, como lo has hecho yo
00:40:00
Pidas una cosa
00:40:02
que me la piden kilómetros hora
00:40:04
pues 90 entre 6
00:40:07
ya está
00:40:09
¿vale? no tengo que hacer el cambio de unidades
00:40:10
¿sí?
00:40:13
fácil ¿no?
00:40:16
pues como este no va a ser
00:40:17
venga, calcula el tiempo que tarda
00:40:18
un coche en recorrer 25 kilómetros
00:40:25
si va a 80 kilómetros por hora
00:40:28
y te digo que me expreses
00:40:30
el resultado en minutos
00:40:32
¿Vale? Lo primero, identificamos los datos y cambiamos las unidades.
00:40:34
Eso, lo primero. ¿Qué datos me dan? La distancia, 25 kilómetros.
00:40:40
¿A qué lo voy a pasar? A metros. Pues serán 25.000 metros.
00:40:45
La velocidad, 80 kilómetros por hora, pues son 22,2 metros partido por segundo.
00:40:51
¿Vale? Eso practicarlo en los cambios de unidades.
00:40:57
Lo más complicado es cambiar la velocidad, porque tengo las dos unidades, tengo los metros y tengo los segundos, entonces cuidado con eso.
00:41:01
Buscamos la fórmula, la velocidad es igual al espacio partido por tiempo, y ¿qué me están pidiendo?
00:41:13
El tiempo, o sea que tendré que despejar a tiempo, ¿cómo se despeja el tiempo?
00:41:21
Los metros por segundo.
00:41:26
Velocidad es igual a distancia partido de tiempo
00:41:32
El tiempo será igual a la distancia partido de la velocidad
00:41:36
¿Vale?
00:41:41
Eso con el triángulo sale clavado
00:41:44
Despejo, pongo cada cosa en su sitio
00:41:47
Muevo
00:41:52
Y me da que tarda 1126 segundos
00:41:53
¿Vale?
00:41:58
esos 1126 segundos
00:42:00
ahora me dice que los tengo que pasar a minutos
00:42:04
claro
00:42:06
tenemos que seguir
00:42:17
tenemos que seguir
00:42:20
los pasos
00:42:22
y no saltarnos los pasos
00:42:24
¿qué vamos a tener?
00:42:26
pues tenemos gráficas
00:42:30
en las que me expresan
00:42:31
el tiempo
00:42:34
que tardo
00:42:36
y la distancia, ¿vale?
00:42:37
En esa gráfica voy a expresar cómo se va moviendo mi móvil, ¿vale?
00:42:42
Este movimiento, el movimiento rectilíneo uniforme se va a caracterizar
00:42:53
porque es un movimiento de línea recta y siempre a la misma velocidad, ¿vale?
00:42:57
En este caso, si representamos en el eje de las X el tiempo y en el eje de las Y la distancia, se obtiene esta gráfica que vemos aquí y la pendiente es lo que me indica la velocidad, ¿vale?
00:43:02
A mayor pendiente, a mayor inclinación que tenga esta recta, pues me va a indicar mayor velocidad.
00:43:20
A la hora ha recorrido 120 kilómetros, pongo mi punto, punto
00:43:29
A las dos horas está en 240, pongo mi punto, punto, ¿vale?
00:43:36
Esa sería una, pero si yo te digo, te pongo en
00:43:43
Qué pesado el naranja este
00:43:48
Bueno, espera, a ver
00:43:51
Aquí
00:43:55
Te digo 1, 2 y 3
00:43:57
Y te digo 360
00:44:04
360 y 370
00:44:07
60 son 720, ¿no?
00:44:11
Y 360 son
00:44:13
1080
00:44:16
Vale, pues entonces ese sería otro
00:44:19
Y te digo, vale, en el 1 está aquí
00:44:23
en el otro, en el 2
00:44:26
está aquí y el 1080 ni me sale
00:44:28
yo uniría
00:44:31
mi gráfica
00:44:32
y te digo
00:44:34
cuál tiene más velocidad
00:44:35
si yo borrase
00:44:38
esto y solo
00:44:40
representara la gráfica
00:44:42
os podría preguntar
00:44:44
cuál ha ido más rápido, pues el que más pendiente
00:44:46
¿por qué? porque ha recorrido
00:44:48
mucha más distancia
00:44:52
en mucho menos tiempo
00:44:54
Esa sería la lectura de una gráfica de movimientos de espirinio uniforme.
00:44:56
Ahí lo tenéis.
00:45:03
Me va diciendo, en un segundo 5 metros, en dos segundos otros 5 metros.
00:45:10
Pero ahí lo que me va diciendo es, en el segundo 1 está en 5, en el segundo 2 está en 10, en el segundo 3 está en 15.
00:45:19
en cada uno de esos segundos
00:45:28
ha recorrido 5 metros pero me va diciendo
00:45:30
el punto donde está localizado
00:45:32
5 más 5 más 5 más 5
00:45:34
¿vale?
00:45:36
y esa será
00:45:39
esta pendiente lo que me indique
00:45:40
la velocidad
00:45:42
¿vale?
00:45:43
cuando dices pendiente te refieres a
00:45:45
la inclinación
00:45:50
también podemos representar
00:45:50
el tiempo en el eje de las x
00:45:55
y la velocidad que lleva, pero va a ser una línea recta, sin pendiente, y paralela al eje de las x.
00:45:58
¿Por qué? Porque no tiene aceleración, porque siempre lleva la misma velocidad, da igual el tiempo en el que esté.
00:46:08
Esto es lo mismo, y estos son ejemplos muy básicos que os he puesto.
00:46:17
os voy a dictar uno más complicado
00:46:33
para que sepáis más o menos
00:46:38
cómo puede ser
00:46:42
no sé ni qué edad es
00:46:45
menos 5 y 52
00:46:46
vale, una persona sale de casa
00:46:51
y recorre en línea recta
00:47:30
los 200 metros
00:47:45
una persona sale de casa
00:47:53
y recorre en línea recta los 200 metros que le separan de la panadería.
00:47:59
Os lo subo de todas maneras a la ola virtual, ¿vale? El problema.
00:48:09
A una velocidad constante de 1,4 metros por segundo.
00:48:13
Está en la tienda, ¿eh?
00:48:27
A una velocidad constante de 1,4 metros por segundo.
00:48:30
Está en la tienda dos minutos
00:48:35
y vuelve a su casa a una velocidad de 1,8 metros por segundo.
00:48:37
Las preguntas.
00:49:04
A. Calcula la velocidad media.
00:49:06
B. ¿Cuál ha sido su desplazamiento?
00:49:10
Y C. ¿Qué espacio ha recorrido?
00:49:21
Velocidad media, desplazamiento y espacio recorrido.
00:49:35
y de
00:49:38
la gráfica
00:49:40
haz la gráfica
00:49:44
¿bien?
00:49:50
genial
00:49:52
¿vale?
00:49:52
o
00:49:59
subo
00:50:00
a la aula virtual
00:50:03
otro problema también
00:50:06
¿vale? el enunciado de este y otro
00:50:11
para que sepáis
00:50:13
Pero vamos
00:50:15
Maldito
00:50:18
Pero si esto es facilísimo
00:50:23
Es verdad
00:50:25
¿Cómo sabéis?
00:50:27
Una pregunta
00:50:30
¿Cuándo tenemos el examen?
00:50:31
El examen es el 25 de febrero
00:50:33
Miércoles 25 de febrero
00:50:35
En la hora de clase
00:50:39
De 7 a 8
00:50:40
Miércoles
00:50:42
¿Y la coordinación que teníais era a mitad de febrero?
00:50:43
Tenemos día de coordinación
00:50:46
el 20 y luego tenemos el 11
00:50:48
de febrero
00:50:51
que es el día que os pilla a vosotros
00:50:52
un miarco
00:50:55
ese día no hay clases
00:50:55
vale
00:51:00
pues
00:51:01
en paz os dejo
00:51:06
como ir en misa
00:51:09
en paz
00:51:13
ni me acuerdo
00:51:14
vale, tenéis
00:51:15
¡Mmm!
00:51:21
- Materias:
- Biología, Física
- Etiquetas:
- MRU, MRUA
- Niveles educativos:
- ▼ Mostrar / ocultar niveles
- Educación de personas adultas
- Enseñanza básica para personas adultas
- Alfabetización
- Consolidación de conocimientos y técnicas instrumentales
- Enseñanzas Iniciales
- I 1º curso
- I 2º curso
- II 1º curso
- II 2º curso
- ESPAD
- Primer Curso
- Segundo Curso
- Tercer Curso
- Cuarto Curso
- Pruebas libres título G ESO
- Formación Técnico Profesional y Ocupacional
- Alfabetización en lengua castellana (español para inmigrantes)
- Enseñanzas para el desarrollo personal y la participación
- Bachillerato adultos y distancia
- Primer Curso
- Segundo Curso
- Enseñanza oficial de idiomas (That's English)
- Módulo 1
- Módulo 2
- Módulo 3
- Módulo 4
- Módulo 5
- Módulo 6
- Módulo 7
- Módulo 8
- Módulo 9
- Ciclo formativo grado medio a distancia
- Primer Curso
- Segundo Curso
- Ciclo formativo grado superior a distancia
- Primer Curso
- Segundo Curso
- Aulas Mentor
- Ciclo formativo de grado básico
- Primer Curso
- Segundo Curso
- Niveles para la obtención del título de E.S.O.
- Nivel I
- Nivel II
- Enseñanza básica para personas adultas
- Subido por:
- Estefania D.
- Licencia:
- Todos los derechos reservados
- Visualizaciones:
- 1
- Fecha:
- 15 de enero de 2026 - 12:40
- Visibilidad:
- Clave
- Centro:
- CEPAPUB CANILLEJAS
- Duración:
- 51′ 23″
- Relación de aspecto:
- 1.78:1
- Resolución:
- 1280x720 píxeles
- Tamaño:
- 138.37 MBytes